
A Measure Theory Tutorial (Measure Theory for Dummies)

Maya R. Gupta
{gupta}@ee.washington.edu

Dept of EE, University of Washington
Seattle WA, 98195-2500

UWEE Technical Report
Number UWEETR-2006-0008
May 2006

Department of Electrical Engineering
University of Washington
Box 352500
Seattle, Washington 98195-2500
PHN: (206) 543-2150
FAX: (206) 543-3842
URL: http://www.ee.washington.edu



A Measure Theory Tutorial (Measure Theory for Dummies)

Maya R. Gupta
{gupta}@ee.washington.edu

Dept of EE, University of Washington
Seattle WA, 98195-2500

University of Washington, Dept. of EE, UWEETR-2006-0008

May 2006

Abstract

This tutorial is an informal introduction to measure theory for people who are interested in reading papers that
use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level
exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and
ideas relevant to applied probability and information theory. There are no proofs and no exercises.

Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details,
but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is
not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and
follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the
references for a deeper understanding.

A Something to measure
First, we need something to measure. So we define a “measurable space.” A measurable space is a collection of events
B, and the set of all outcomes Ω, which is sometimes called the sample space. Given a collection of possible events B,
why do you need to state Ω? For one, having a sample space makes it possible to define complements of sets; if the
event F ∈ B, then the event FC is the set of outcomes in Ω that are disjoint from F . A measurable space is written
(Ω,B).

A.1 Algebras and Fields
Often, you will see that the collection of events B in a measurable space is a σ-algebra. A σ-algebra is a special kind
of collection of subsets of the sample space Ω: a σ-algebra is complete in that if some set A is in your σ-algebra, then
you have to have AC (the complement of A) in your set too. Also, it must be that if you have two sets A and B in your
collection of sets, then the union A ∪ B must also be in your collection of sets (in fact, σ-algebras are closed under
countable unions, not just finite unions). Another term sometimes used to mean the same thing as σ-algebra is σ-field.
The smallest possible σ-field is a collection of just two sets, {Ω, ∅}. The largest possible σ-field is the collection of all
the possible subsets of Ω, this is called the powerset.

B Measure
A measure µ takes a set A (from a measurable collection of sets B), and returns “the measure of A,” which is some pos-
itive real number. So ones writes µ : B → [0,∞). An example measure is volume, which goes by the name Lebesgue
measure. In general, measures are generalized notions of volume. The triple (Ω,B, µ) combines a measurable space
and a measure, and thus the triple is called a measure space. A measure is defined by two properties:
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1. Nonnegativity: µ(A) ≥ 0 for all A ∈ B

2. Countable Additivity: If Ai ∈ B are disjoint sets for i = 1, 2, . . ., then the measure of the union of the Ai is
equal to the sum of the measures of the Ai.

You can see how our ordinary notion of volume satisfies these two properties. There are a couple variations on measure
that you will run into. One is a signed measure, which can be negative. A special case of measure is the probability
measure. A probability space is just a measure space with a probability measure. And a probability measure P has
the two above properties of a measure but it’s also normalized, such that P (Ω) = 1.

A probability measure P over discrete set of events is basically what you know as a probability mass function. For
example given probability measure P and two sets A,B ∈ B, we can familiarly write

P (B|A) =
P (A ∩B)

P (A)
.

B.1 Measure zero
A set of measure zero is some set A ∈ B such that µ(A) = 0. In terms of probability, that means “I’ve got this event
A in my collection of events, but it’s never going to happen.” The nice thing about sets of measure zero is they don’t
count when you want to state things about the collection of sets B. For example, you could integrate a function f over
B, and the value f(A) might be infinite, but you can ignore f(A) if set A has measure zero.

B.2 Measurable functions
A function defined over a measurable set is called a measurable function.

B.3 Borel sets
A σ-algebra (collection of sets) that appears often is the Borel σ-algebra. You’ll usually see people talk about “the
Borel σ-algebra on the real line,” which is the collection of sets that is the smallest sigma-algebra that includes the
open subsets of the real line. A Borel set is an element of a Borel σ-algebra. It turns out that just about any set you can
describe on the real line is a Borel set, for example, the unit line segment [0, 1] is a Borel set, the irrational numbers
form a Borel set, etc.

You can define the sample space to be the real line R, and then the corresponding Borel σ-algebra is the collection
of sets R. Thus, (R,R) is a measurable space. You could also define a Borel measurable space for R2, etc., as
(Rd,Rd). One thing that makes the Borel sets so powerful is that if you know what a probability measure does on
every interval, then you know what it does on all the Borel sets. This shows up in proofs where people want to say
that some measure µ1 is really equivalent to some other measure µ2. To do that they just need to show that µ1 and µ2

are equivalent on all intervals, and then they have proven that the two measures are equivalent for all the Borel sets
(and hence over the measurable space). The Borel set can be equivalently defined by intervals of various types, for
example, you could use the set of all open intervals (a, b),−∞ ≤ a ≤ b ≤ ∞, or all closed intervals of the real line
[a, b],−∞ ≤ a ≤ b ≤ ∞. Or, you could use all right closed intervals: (−∞, b],−∞ ≤ b ≤ ∞. In fact, that’s how
one defines a cummulative distribution function, and this is the basis for the math that tells you that if two cdfs are
equal for all choices of b, then the two probability measures must be equal.

B.4 Support
The support of a measure is all the sets that do not have measure zero. For example you might say, “the probability
measure µ has support only on the unit interval,” by which you mean there is zero probability of drawing a point bigger
than one or smaller than zero. You often see written “the measure has compact support” to note that the support of the
measure forms a compact (=closed and bounded) set.

B.5 Lebesgue measure
The Lebesgue measure µL(A) is just the volume (or area, or length) of set A. For example, µL([0, 1]) = 1.
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B.6 Borel measure
To call a measure a Borel measure means it is defined over a Borel σ-algebra.

B.7 Example
This example is based on an example from Capinski and Kopp’s book, page 45 [6] of what it means to say “draw a
number from [0, 1] at random.”
Restrict Lebesgue measure m to the interval B = [0, 1] and consider the σ-field M of measurable subsets of [0, 1].
Then m[0,1] is a probability measure on M. Since all subintervals of [0, 1] with the same length have the same
measure, the mass of m[0,1] is spread uniformly over [0, 1], so that the measure of [0, 1/10) is the same as the measure
of [6/10, 7/10) (both are 1/10). Thus all numerals are equally likely to appear as first digits of the decimal expansion
of a number drawn randomly according to this measure.

C The truth about Random Variables
A basic definition of a random variable is that it specifies a set of events that happen with corresponding probabilities.
More formally, let there be some measure space (Ω,F , P ), then a random variable is a measurable function X that
maps the measurable space (Ω,F) to another measurable space, usually the Borel σ-algebra of the real numbers
(R,R).

We can see that the formal definition is saying the same thing as the basic definition. Consider an output event
A ∈ R. The random variable X induces a probability on the output event A, which is P(A) = P ({w : X(w) ∈ A}).
That is, there is some set of events {w} that X maps to the output event A, and the probability of output event A is
the total probability of those events {w}. That is, the probability of a Borel set A in the output space is equal to the
probability of the inverse image under X of that Borel set:

P(A) = P (X−1(A)) = P ({w : X(w) ∈ A}).

This works for every Borel set in the output space, so the random variable X induces a probability measure over the
space.

As shorthand, one writes the probability P(A) = P (X ∈ A). In fact, it’s common not to write the induced measure
at all, and just write P (X ∈ A).

C.1 Distributions
The probability measure P over the output measurable space induced by a random variable X is called the distribution
of X [7]. However, the term distribution is also used in a more specific way. As we foreshadowed in the section on
Borel sets, the complete description of the probability measure induced by a random variable X requires knowledge
about P (X ∈ A) for all sets A ∈ R. However, since the Borel σ-algebra can be generated by the set of intervals
(−∞, x) for all x ∈ R, we only have to know P (X ∈ A) for every set A = (−∞, x). Then, the distribution function
of X is F (x) = P (X ≤ x). The distribution function is usually indexed by the random variable, such as FX or FY .

Then one can say that the induced probability measure over the interval (a, b] is P((a, b]) = F (b)− F (a).

C.2 Probability densities
Given a distribution, there might not be a corresponding density. To have a density you need the distribution function
F to be what is called “absolutely continuous,” that is, it must be that for all a < b,

F (b)− F (a) =
∫ b

a

f(x)dx,

where f is a non-negative, Lebesgue measurable function. If f exists such that the above holds, then f is called the
density of the distribution F .
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C.3 Discrete distributions
A discrete distribution F has the familiar corresponding point mass function, or probability mass function. For a
discrete distribution F there is some countable set of numbers {xj} and point masses {pj} such that

F (x) =
∑
xj≤x

pj ,

for all x ∈ R. The {pj} form the probability mass function (pmf) over the events, which are defined to be intervals of
the real line.

C.4 Expectation and integration
Expectation and integration are fundamentally the same thing. We are going to start with expectation (the average) as
the more fundamental concept, and from there develop integration.

Here is a limit definition of expectation for non-negative random variables X [5][7]. This is our starting definition,
from which we will get to the familiar integral formula:

EX = lim
n→∞

n2n∑
k=1

k − 1
2n

P

(
k − 1
2n

≤ X <
k

2n

)
,

(note this limit might not exist).
This formula has all the parts you expect: it’s a sum over an increasingly larger number of increasingly smaller

components, and for each component one takes the measure of the interval. What about negative random variables?
We’ll need a couple extra definitions. Let X+ = max(X, 0), and let X− = −min(X, 0). Then, for an arbitrary
random variable X let EX = EX+−EX− as long as EX+ and/or EX− are finite. Note that EX− turns a negative
X into a positive, but we then negafy it, so the negative aspect is not lost.

This general definition of expectation is the subtraction of two limit-sums, and we give this general definition of
expectation a new notation, the integral notation:

EX =
∫

Ω

X(w)dP (w)

which is also written
EX =

∫
XdP,

and sometimes written
EX =

∫
X(x)P (dx).

If E|X| < ∞, then one says that the random variable X is integrable. You’ll note from the limit-sum definition
that if one takes the integral of a set of measure 0, one gets 0. That is a simple but key idea in many proofs, and you’ll
often see equivalence relationships where some q equals some p if they agree on all sets that do not have measure 0.

The most common measure to use in integration is the Lebesgue measure, which is for almost all practical purposes
equivalent to the standard Riemann integration that one first learns. As noted in Section E, Riemann integration has
some problems that make it not as useful as Lebesgue integration, and the reader is referred (for example) to Capinski
and Kopp for more details [6].

D Entropy
Entropy is a useful function of a random variable and in this section we will use it to solidify some of the ideas
and notation introduced above. First, consider the entropy of a discrete alphabet random variable f defined on the
probability space (Ω,B, P ). Then the entropy is

HP (f) = −
∑
a∈A

P (f = a) ln P (f = a).
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Also, f induces a probability mass function (pmf) pf , where pf = P (w : f(w) = a) = P (f = a), so you can
equivalently write

HP (f) = −
∑
a∈A

pf (a) ln pf (a).

A discrete random variable f induces a partition on the input space Ω that corresponds to the inverse image of each
event: let the partition Q consist of sets {Qi : i = 1, 2, . . . , ‖A‖} where Qi = {w : f(w) = ai} = f−1({ai}). Then
you can also write entropy in terms of the induced partition Q:

HP (Q) = −
‖A‖∑
i=1

P (Qi) lnP (Qi).

E Limits
To quote Gut [5], “One of the basic questions in mathematics is to what extent limits of objects carry over to limits of
functions of objects.” One of the more important results in this area is Lebesgue’s Dominated Convergence Theorem.
A formal statement of this can be found on mathworld’s page (www.mathworld.com). Basically, it says that the integral
of a function f with a measure µ is the same as the limit of the integral of fn, where f1, f2, . . . , fn is a sequence of
measurable functions that converges to f . There are some other restrictions on the fn’s (see the formal statement).
What’s powerful about this theorem though is that one doesn’t have to assume that f is measurable, instead, the
theorem concludes that f is integrable, and shows you how to integrate it by instead taking the limit of the integral of
the sequence of functions. The integration one learns as a kid is Riemann integration. This theorem doesn’t work for
Riemann integration, and that is considered one of the flaws of Riemann integration that makes Lebesgue integration
more general and more useful. For more on the flaws of Riemann integration, see for example [6].

F Read on
If you are interested in a more thorough understanding of measure theory and probability, one of the friendliest books
is Resnick’s [8], which teaches measure theoretic graduate level probability with the assumption that you do not have
a B.A. in mathematics. Other good texts are an undergraduate text on measure theory [6], and Gut’s graduate level
measure-theoretic probability book [5]. There are certainly plenty of other probability and measure theory text books,
but these three are relatively well-suited for self-study. If you’ve decided you aren’t so interested in formal probability,
but want to learn more about approaches to solving probability problems, I recommend Richard Hamming’s book [2].

If you are interested in information theory you can solidify your understanding of the use of measure theory in
information theory by reading Bob Gray’s book [7], Kullback’s book [1], or the information theory book by Ash [4]
(you might want to read the less formal book by Reza [3] before Ash). Gray’s book is available free on-line, and the
Kullback, Ash, and Reza books are available in inexpensive Dover editions.
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