
Master Course Description for EE-445

Title: Fundamentals of Optimization and Machine Learning

Credits: 4

Course Catalog Entry:

EE 445: Fundamentals of Optimization and Machine Learning is
an introduction to optimization and machine learning models motivated by
their application in areas including statistics, decision-making and control, and
communication and signal processing. Topics include convex sets and functions,
convex optimization problems and their properties, convex modeling, duality,
linear and quadratic programming, with emphasis on usage in machine learning
problems including regularized linear regression and classification.

Coordinators:

• Lillian Ratliff, Assistant Professor, Electrical and Computer Engineering

• Maryam Fazel, Professor, Electrical and Computer Engineering

Goals: To give ECE students the foundational mathematical concepts and
theory that underpins modern optimization and machine learning algorithms.
Provide a background in mathematical reasoning, and convex problem modeling
and solving. Develop a mathematical understanding of how convex optimization
tools are used in the design, and analysis of machine learning algorithms and
optimization problems used in various ECE application domains including data
science, decision-making and control, communication, and signal processing.

Learning Objectives: At the end of this course, students will be able to:

1. Identify and characterize convex sets, functions, and optimization problems.

2. Develop skills to model applied problems as convex optimization problems.

3. Gain experience with the modeling environment CVX, implement simple
optimization methods such as gradient descent in Python.

4. Model basic machine learning algorithms using the language of convex
optimization.

Textbook:

• Main: Optimization Models in Engineering (Giuseppe Calafiore and Lau-
rent El Ghaoui)

• Supplementary: Convex Optimization (Stephen Boyd and Lieven Vanden-
berghe)

• Supplementary: Introduction to Applied Linear Algebra: Vectors, Matrices,
and Least Squares (Stephen Boyd, Lieven Vandenberghe)

Prerequisites by Topic:
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1. Calculus sequence: Math 224 or Math 324

2. Linear Algebra: Math 208 or Math 308 or Math 136 or AMATH 352

3. Python: EE 241 or EE 235 or CSE 163

Course Structure Overview:

1. Module-1: Review of Mathematical Foundations

Module-1 concentrates on the review of the primary mathematical
tools used in convex optimization and machine learning as relevant
for this course. Topics include:

• Vectors, function properties, and norms

• Matrices, eigenvalue decomposition

• Symmetric matrices, positive semi-definite matrices, singular value decom-
position, and principal component analysis (PCA)

Applications will be used to introduce the concepts above and rein-
force their importance:

Examples of applications include:

• Machine learning: learning from data, discovering patterns and structure
in data, dimensionality reduction

• Control and Signal Processing with Applications in Neuroscience: image
compression and facial recognition, identifying neurons from the shape of
its action potential, spike-triggered covariance analysis

• Quantitative Finance: modeling and analysis of the shape of a yield curve,
portfolio asset analysis, interest rate modeling

2. Module-2: Least Squares Regression in Machine Learning

Module-2 concentrates on one of the quintessential tools in machine
learning, namely least square regression. Topics include:

• Linear equations and least squares

• Least squares data fitting

• Regularized least squares, Ridge regression, Kernel methods

• Generalization and cross validation

As in Module-1, applications will be used throughout the module to
motivate the different methods and topics. Examples of applications
include:

• Machine Learning: regression, classification, ranking, feature selection

• Control and Signal Processing: linear prediction, smoothing, estimating
missing data, filter design
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• Quantitative Finance: forecasting portfolio returns, portfolio asset man-
agement 3. Module-3: Introduction to Convex Analysis and
Optimization

Optimization is at the core of every machine learning model. Module-
3 concentrations on convex analysis, modeling and optimization with
connections to its use in machine learning. In particular, it will be
demonstrated that machine learning problems and algorithms arising
in different domains can be modeled using the language of convex
optimization. Topics include:

• Convex sets and functions, convex conjugate duality

• Convex optimization problems, gradient descent

• Lagrangian, duality in convex optimization (weak/strong duality) optimal-
ity conditions including Karush-Kuhn-Tucker conditions

• Linear and quadratic programs

Applications will be used throughout this module to convey concepts.
Examples of applications include:

• Machine Learning: solving least squares via gradient descent, Maximum A
Posteriori (MAP) inference via linear programming and duality

• Control and Signal Processing with Applications in Game Theory: find-
ing Nash equilibria in matrix games via linear (zero-sum) and quadratic
(general sum) programming, system identification for ARX/ARMA models.

• Quantitative Finance: risk assessment via linear programming, mean-
variance analysis in portfolio selection and asset pricing

4. Module-4: Applications

Module-4 combines concepts from the previous three modules by
revisiting the example applications from Modules 1-3 in greater detail.
The applications will be the primary focus and connections will be
drawn to different aspects of the modeling, data analysis and solutions
(optimization problem or algorithm) as they relate to the concepts
from Modules 1-3. Example applications include:

• Machine Learning: LASSO and kernel methods

• Control and Signal Processing: sparse signal reconstruction, linear
quadratic control design

• Quantitative Finance: hedging interest rate sensitivity of a portfolio, asset
allocation, interest rate simulation using Maximum Likelihood Estimation
(MLE)

Course Structure: The class meets for two 1 hour 20-minute lectures and
one 2 hour discussion section per week. The latter is administered by teaching
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assistants. Homework (with theoretical and computational components) is
assigned weekly. One exam is given nominally at the end of the 5th week, and a
comprehensive final exam is given at the end of the quarter.

Computer Resources: The course uses Python for the computational com-
ponents of the homeworks, and some use of the modeling environments CVX
(which can be called within Matlab) or CVXPY (which uses Python). Students
are expected to use their personal computers.

Laboratory Resources: None.

Grading: Approximate distribution: Homework 35%, Midterm Exam 25%,
Final Exam 40%. The grading scheme in any particular offering is the prerogative
of the instructor.

ABET Student Outcome Coverage: This course addresses the following
outcomes:

H = high relevance, M = medium relevance, L = low relevance to course.

(1) An ability to identify, formulate, and solve complex engineering problems by
applying principles of engineering, science, and mathematics (H) The homework
and exams require direct application of mathematical knowledge to engineering
problems, and require students to model engineering problems in the language
of convex optimization.

(3) An ability to communicate effectively with a range of audiences (L) Students
will learn and apply techniques to rigorously and formally apply and communicate
theoretical concepts.

(7) An ability to acquire and apply new knowledge as needed, using appropriate
learning strategies.

Religious Accommodation Policy:

Washington state law requires that UW develop a policy for accommodation of
student absences or significant hardship due to reasons of faith or conscience, or
for organized religious activities. The UW’s policy, including more information
about how to request an accommodation, is available at Religious Accommoda-
tions Policy

(https://registrar.washington.edu/staffandfaculty/religious-accommodations-
policy/).

Accommodations must be requested within the first two weeks of this course using
the Religious Accommodations Request form (https://registrar.washington.edu/students/religiousaccommodations-
request/).

Prepared By: Lillian Ratliff, Maryam Fazel Last Revised: 2/21/21
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