Analyzing the Power Grid

PMP EE 559

Instructor:	Prof. Miguel A. Ortega-Vazquez, <u>maov@uw.edu</u>	
Class:	Mondays 1800-2150 hrs. at EEB 045	
Office hours:	Sundays 1500-1630 hours at M350, EE building.	
TA:	To be announced	
Course text:	Glover, Sarma & Overbye, Power Systems Analysis and Design, 5^{th}	
	Edition, 2012.	
Purpose of	The purpose of this course is to equip the students with the basic	
the course:	course: understanding of power system's components; as well as the methods to	
	analyze electrical power systems.	

Couse Syllabus:

1.	Introduction	~ 3 hours
	1.1. Electric systems	
	1.2. A bit of history of electric power systems	
	1.3. The structure of the US power system	
2.	Power systems basics	${\sim}3~{\rm hours}$
	2.1. The phasor transformation	
	2.2. Instantaneous power	
	2.3. Complex power	
	2.4. Reactive power compensation	
	2.5. Three-phase systems	
	2.6. Operation of three phase systems	
3.	Transmission lines	${\sim}6~{\rm hours}$
	3.1. Elements of a Transmission line	
	3.2. Transmission line differential equations	
	3.3. Lossless transmission line	
	3.4. Lumped parameters model (π -equivalent)	

4.	Transformers	~6 hours
	4.1. Transformers overview	
	4.2. Ideal transformer	
	4.3. Real transformer	
	4.4. Per Unit calculations	
	4.5. Per unit calculation in three-phase systems	
	4.6. Change of base	
	4.7. Three-phase transformers	
5.	Synchronous Generators	${\sim}3~{\rm hours}$
	5.1. Structure of a synchronous generator	
	5.2. Model of a synchronous generator	
	5.3. Operation of an isolated synchronous generator	
	5.4. Operation of a synchronized generator	
6.	Power Flow	${\sim}9~{\rm hours}$
	6.1. Linear vs. non-linear systems	
	6.2. Review of nodal analysis	
	6.3. Admittance [Y] matrix	
	6.4. Power flow equations and type of buses	
	6.5. Review of the Newton-Raphson method	
	6.6. Application of the Newton-Raphson method to solve the power flow pro-	oblem
	6.7. dc power flow	
	6.8. Power flow applications and controls	
7.	Fault analysis	${\sim}6~{\rm hours}$
	7.1. Balanced Faults	
	7.2. Symmetrical components	
	7.3. Unbalanced faults	