Instructors: S. Roy ¹ & T. Henderson ²

Course Description

The course will serve as an introduction to selected topics in 4G/5G oriented wireless communication networks - the material is a mix of lectures on principles and design fundamentals complemented by network performance evaluation via simulation. With high-speed wireless data access fundamental to the growth of the Internet, students will be exposed to the 2 major broadband wireless network technology standard families: 802.11 WLANs and LTE/LTE-Advanced. The course project and some homework will require use of the open-source ns-3 network simulator (available at https://www.nsnam.org) via a set of experiments utilizing existing basic wireless, 802.11 and LTE protocol stack implementations in ns-3.

Course Objectives By the end of the course, the student will have demonstrated

 \bullet grasp of fundamental elements of wireless networks and IEEE 802.11 WLAN, 4G LTE and emerging 5G network networks

• ability to conduct network simulation experiments in ns-3 for network performance evaluation, produce and interpret statistical outputs

• ability to define and conduct a network simulation project and explore an aspect of network performance optimization.

Detailed Course Outline

<u>I. Network Simulation</u> [2 weeks]

• (week 1) Introduction to ns-3: installation, basic usage, example programs, data output management, introduction to ns-3 LTE and Wi-Fi

• (week 2) Wireless experiments with ns-3: Scripting, wireless networking APIs, execution and debugging, collecting simulation data, principles of statistical simulation & data visualization

II. Wireless Channels: Models & Performance Evaluation [3 weeks]

- (week 3) Basic wireless (narrowband) propagation, statistical models
- (week 4) Link & MAC level performance evaluation models
- (week 5) Wideband communications, MIMO

III. 802.11 WLANs & LTE Network Models [5 weeks]

• (week 6) OFDM & OFDMA fundamentals: Block diagram of all the major transceiver (PHY) blocks + associated MAC processing; Network architecture

• (week 7) Multi-user techniques (DL and UL MU-MIMO, beamforming, DCF and EDCA)

• (week 8) System aspects: Mobility management, transport protocols over wireless (QUIC, TCP)

• (week 9) Coexistence: LTE and Wi-Fi coexistence, radar coexistence, white space networking, spatial reuse, interference mitigation

 $^{^1 {\}rm Office:}$ M330; Ph: (206) 221-5261; sroy@uw.edu

²Office: M354; Ph: (206) 498-3127; tomhend@uw.edu

• (week 10) 5G advanced topics: 5G modulation, cloud-RAN, millimeter wave, New Radio

Course Policy

Students are welcome to discuss assignments or project design/implementation with instructors, TA or fellow students. However all homework submitted must be individual, including your own ns-3 code/experiments. The Final project will be conducted by teams of 2 and will require: (i) an initial proposal (2 pg) for approval mid-way and (ii) a written report due finals week. Students are encouraged to define a project based on their interests in wireless communications with consultation/input of instructors.

Pre-requisites:

The 1st two are strongly desirable requirements (either formal courseware or equivalent experience).

• Programming Proficiency: C/ C++ programming and running Bash line commands. Ability to plot raw data files in some plotting framework (Excel, MATLAB, Python Matplotlib, etc.).

- Undergraduate Probability Digital/Wireless Communications
- Exposure to concepts of TCP/IP protocol stack & Internet architecture (e.g. UW EE 461 Intro to Computer Networks or equivalent)

TA: TBD

Assessment: The overall grade will be based on -

(i) 5 Homework assignments [60%] and (ii) Final Class Project [40%]

References:

The texts below are intended for background/in-depth information. The lectures and supplementary material will suffice as the primary source.

- T. Rappaport, "Wireless Communications," Prentice Hall, 2002 2nd. ed. (ch 4, 5: radio propagation)
- D. Tse and P. Viswanath, "Fundamentals of Wireless Communication," Cambridge Univ. Press, 2005 (ch. 3 diversity, ch 6&7: multi user communications, MIMO)
- M. Gast, "802.11 Wireless Networks: The Definitive Guide," O'Reilly, 2002.
- J. Heiskala and J. Terry, "OFDM Wireless LANs: A Theoretical & Practical Guide," SAMS Publishing, 2002.
- A. Tanenbaum, "Computer Networks," Prentice Hall, 4th edition or later.
- E. Dahlmann, S. Parkvall & J. Skold "4G: LTE/LTE-A for Mobile Broadband," Acad. Press, 2013, 2nd ed.
- "ns-3 Tutorial": https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf