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Abstract 

The Partial-Element-Equivalent-Circuit (PEEC) approach is an 
effective method to convert three-dimensional on-chip multi-
conductor structures to circuit-level descriptions. In this paper, a 
triangular-mesh-based PEEC approach is described, wherein the 
surfaces of arbitrarily-shaped conducting structures are 
represented by triangular mesh tesselations. A coupled EM-circuit 
formulation is obtained through the separation of the scalar, 
vector, and ohmic potential interactions between pairs of triangular 
edges-based basis functions. The overall approach can be 
interpreted as a SPICE-free, surface-only version of PEEC method 
and is especially useful for on-chip signal integrity analysis of 
systems-on-chip layout where components with irregular shapes 
are common. 
 
 

I. INTRODUCTION 

 
Recently, Systems-on-Chip (SoCs) have become one of 

the focus areas in VLSI. Through the integration of analog 
and digital parts into a single chip, the resulting system under 
design achieves more reliability and shorter manufacture to 
market cycle than solutions based on individual digital and 
analog integrated circuits. Meanwhile, new problems have 
emerged in SoC design [1], e.g., the fast-switching current in 
the digital part of a chip can electromagnetically couple to the 
analog part which is noise sensitive. This is especially true 
when the system is functioning at the GHz range or beyond. 

In order to analyze crosstalk due to EM coupling, 
electromagnetic simulation is needed for the layout of the SoC 
chip. The PEEC method [2] is a particularly effective 
approach to model the electromagnetic effects of a multi-wire 
or multi-conductor structure using SPICE compatible 
elements. 

The interaction of a multi-wire or multi-conductor 
structure can be described using the Electric Field Integral 
Equation (EFIE) [3]. In classical electromagnetics (EM), the 

EFIE is usually formulated using a Method of Moments 
(MoM) approach [4]. Instead of filling the Method of 
Moments (MoM) matrix and solving the resultant set of linear 
equations, the PEEC method extracts partial elements 
including resistance, self/mutual capacitance and self/mutual 
inductance from the EFIE formulation, by identifying these 
elements with ohmic, scalar, and vector potential interactions, 
respectively. A SPICE compatible netlist can then be 
generated using these extracted partial elements. Through this 
extraction, the original EM problem is converted to a circuit 
problem, and a circuit simulator can then predict the 
performance of a layout while automatically considering the 
electromagnetic effects due to geometry and structure [2]. 

The classical PEEC method, originally formulated for 
modeling crosstalk between digital traces, relies on a 
longitudinal filament discretization of all structures. This 
discretization, which assumes a direction of current flow 
along the length of the filament, is very well-suited for thin 
and long interconnect structures. However, an SoC scenario 
leads to several arbitrarily shaped structures, including spiral 
inductors, and regular and split ground planes wherein the 
filament approach is inherently not well suited, because of the 
arbitrary directions of current flow in such structures. 
Moreover, it is not intuitive to represent current flow on non-
longitudinal structures in terms of scalar longitudinal 
filaments.  

In this paper, Rao-Wilton-Glisson (RWG) basis functions  
[4,5] that are linear basis functions defined over triangles are 
used to model conductors using surface-only triangular 
meshes. Interactions between RWG basis functions are then 
extracted and were used to form a coupled matrix which also 
includes MNA formulation of circuits. The aim of developing 
a coupled formulation outside SPICE is to reduce reliance on 
sparse-matrix solvers, since sections of the coupled matrix 
system are inherently dense. 



The rest of the paper is organized as follows. Section II 
briefly outlines the classical filamental PEEC method, and 
introduces the RWG triangle-basis functions. Section III 
presents the triangular mesh approach and the coupled EM-
circuit formulation. Numerical simulation results are given in 
Section IV and Second V summarizes the paper. 

 
II. MESH GENERATION: FILAMENTS VERSUS TRIANGLE 

MESHES 
 
The PEEC method, originally developed to model digital 

interconnects, inherently assumes that filaments, i.e. thin and 
long structures, can be used to model sections of the structure 
under analysis, as well as the current flow (along the filament 
length). As shown in Fig. 1, filamental PEEC divides the 
object into filaments. Each filament, represented as a volume 
cell, represents a longitudinal current, and related surface cells 
represent surface charge. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For structures where 2D (e.g. a thin ground plane) or 3D 
(e.g. a thick ground plane) current distribution is necessitated, 
independent discretizations in terms of filaments in each 
direction are required, and the efficiency of the filamental 
PEEC method rapidly degrades. Also inherent in filamental 
approach is an eventual staircase approximation to the current 
distribution. In general, filamental PEEC is ideal  for long 
rectangular structures under the assumption that the currents 
flow only  along the longitudinal direction. 

 In this paper, triangular meshes are used to represent 
arbitrarily-shaped surfaces. Common edges between triangles 
are used to define RWG basis functions that define current 
flow and charge distribution. Fig. 2 shows the triangle pair on 
which the current density and charge density is defined. An 
RWG basis function, defined with respect to the common 
edge, defines current flows from one triangle (+) across the 
common edge to the other (-) triangle.  
 

 
 
 
 
 
 
 
 
 

III.  COUPLED EM-CIRCUIT SYSTEM FORMULATION 
 

In the MoM, conducting structures are analyzed using the 
electric field integral equation formulation (EFIE), wherein 
the surface current density J satisfies the equation: 

 
(3.1) 

 
Scalar potential φ and surface charge density  are related 

through the equation: 
 

(3.2) 
 
 

In the above equation Zs represents surface impedance  

(3.3) 

which is a valid approximation at frequencies where the skin 
depth is smaller than the cross section of conductors. At 
lower frequencies, a second (interior) problem and accurate 
modeling of the lossy medium Green function within the 
conductor is required. 

Upon testing the EFIE, the following matrix equation can 
be derived, entries of the matrix can then be extracted from 
the interaction of basis function. 

(3.4) 
 

(3.5) 
After dividing the surface of the object into triangular 

meshes, the unknowns of interest are: distribution of scalar 
potential φ, surface charge density q, and surface current 
density J . These quantities are expanded using basis 
functions defined over triangles: 

φ:  piecewise constant basis function 
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Figure 1.  (a) rectangular conductor divided into filaments  
(b) Volume cells for currents (c) Surface cells for capacitive 
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Np is the number of total patches,  Cn is a piecewise 
constant basis function, which is 1 on triangle n, and 0 
elsewhere. 

q: piecewise constant basis function 
 
 
J : RWG basis function 

 
Ne is the number of total non-boundary edges, nf is  

 RWG basis function that is defined as: 
 

 
 

 
( 3.6) 

 
 

 

In the above expression, nl is the length of the 

common edge, +
nA and −

nA is the area of triangle Tn
+ 

and Tn
- respectively. 

 
With the above three basis functions, the entries of the L, 

P, and Z matrices can be defined as: 
 

(3.7) 
 

(3.8) 
 
 

(3.9) 
 

where Zij is non-zero only if edges i and edge j share a 
common triangle. 

The matrix formulation for the EM part will be: 
 
 

(3.10) 
 
 

 
A  is a sparse matrix which describes the adjacency of 

edges and patches, each row has two non-zero terms which 
correspond to patches associated with a particular edge. D  is 
a diagonal matrix used to enforce the current and charge 
continuity equation. The unknowns are the coefficients 
associated with the current, potential, and charge basis 
functions. 

When coupled with circuits, the formulated EM matrix 
needs to be extended to include both the circuit part and the 
EM-circuit connection part, as in equation 3.11. 

 
 

 
 

(3.11) 
 
 

 

M N A is the Modified Nodal Analysis matrix of the 
circuit part, X is a connection matrix which guarantees the 
current and field continuity at the node where EM structures 
and circuits are connected. The excitation includes regular 
voltage and current sources. 

 
IV NUMERICAL RESULTS 

 

The first example is an interconnect over a ground plane, 
as in [6]. The geometry is drawn again in Fig.3: 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interconnect is driven by a voltage source and is 

terminated by 86 Ohm resistors at both ends. The 
interconnect is 2.0cm long, 1mm wide and 0.5mm above the 
ground plane. In this example, the current flow on both the 
interconnect and ground plane is considered to be two 
dimensional. The discretized structure and the input 
impedance are shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 3. Interconnect above a solid ground plane 
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Figure 4. Triangular meshing of the structure (top) 

Input impedance of interconnect over a  ground plane(bottom) 
 

It is interesting to note that the transmission line resonance 
behavior of this structure is also captured. The finite-sized 
impedance peaks is due to coarse frequency sampling at 
resonance. 

The second example illustrates that the coupled method 
can be used for cross talk analysis. Two scenarios are studied  
here: in one scenario two traces are 0.5mm above the ground 
plane and 1mm apart, in the other scenario the two traces are 
1mm apart at the near end and 2mm apart at the far end. One 
trace is excited with a 600 ps symmetrical trapezoidal pulse 
with a 10 ps rise time.  
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As can be seen from Fig. 6, the far end cross talk voltage 
waveform is weaker for the second case. Also, the time lag 
between the two crosstalk peaks is the same as the length of 
the input pulse.  
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Figure 6.  Cross talk at far end 
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Figure 5. Two parallel traces(top), two traces with larger 
distance at far end(bottom) 



The third example is a spiral inductor of dimensions 
200µm×200µm, placed 30µm above the ground plane, as 
shown in Fig. 7. The observation of interest is the current 
distribution on the ground plane. The inductor has two turns, 
and both the line width and the gap width are 20µm.  
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The coupled EM-circuit simulation gives ground current 
distribution as in Fig. 8. At 1 GHz the current concentrates 
below the inductor in order to minimize the inductive 
impedance of the loop including return current. 
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V. CONCLUSION 
 

In this paper, a generalized PEEC approach based on 
triangular meshes and well-known RWG basis functions was 
presented. Also, a SPICE-free coupled EM-circuit 
formulation was developed in order to solve the dense 
coupled system outside SPICE. Numerical results were 
presented to validate the approach and demonstrate its 
advantages in modeling induced and return current density 
due to arbitrarily-shaped structures. Furthermore, since the 
approach is surface-based, it can be used to reduce the 
numerical computation overhead of circuit-EM analysis by 
representing very thin structures by a two-dimensional 
representation. 
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Figure 7. Spiral inductor above a ground plane 

Figure 8. Current distribution of inductor and ground 
plane at 1GHz 


