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Abstract

Sources of training data suitable for language modeling of conversational speech are limited. In this
paper, we show how training data can be supplemented with text from the web filtered to match the style
and/or topic of the target recognition task, but also that it is possible to get bigger performance gains
from the data by using class-dependent interpolation of N-grams.

1 Introduction

Language models constitute one of the key components in modern speech recognition systems. Training
an N-gram language model, the most commonly used type of model, requires large quantities of text that
is matched to the target recognition task both in terms of style and topic. In tasks involving conversational
speech the ideal training material, i.e. transcripts of conversational speech, is costly to produce, which limits
the amount of training data currently available.

Methods have been developed for the purpose of language model adaptation, i.e. the adaptation of an
existing model to new topics, domains, or tasks for which little or no training material may be available.
Since out-of-domain data can contain relevant as well as irrelevant information, various methods are used
to identify the most relevant portions of the out-of-domain data prior to combination. Past work on pre-
selection has been based on word frequency counts [17], probability (or perplexity) of word or part-of-speech
sequences [8], latent semantic analysis [1], and information retrieval techniques [12, 8]. Perplexity-based
clustering has also been used for defining topic-specific subsets of in-domain data [6, 4, 13], and test set
perplexity has been used to prune documents from a training corpus [10]. The most common method for
using the additional text sources is to train separate language models on a small amount of in-domain and
large amounts of out-of-domain data and to combine them by interpolation, also referred to as mixtures
of language models. The technique was reported by IBM in 1995 [11], and has been used by many sites
since then. An alternative approach involves decomposition of the language model into a class n-gram for
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interpolation [7, 16], allowing content words to be interpolated with different weights than filled pauses, for
example, which gives an improvement over standard mixture modeling for conversational speech.

Recently researchers have turned to the World Wide Web as an additional source of training data for
language modeling. For “just-in-time” language modeling [2], adaptation data is obtained by submitting
words from initial hypotheses of user utterances as queries to a web search engine. Their queries, however,
treated words as individual tokens and ignored function words. Such a search strategy typically generates
text of a non-conversational style, hence not ideally suited for ASR. In [24], instead of downloading the
actual web pages, the authors retrieved N-gram counts provided by the search engine. Such an approach
generates valuable statistics but limits the set of N-grams to ones occurring in the baseline model.

In this paper, we present an approach to extracting additional training data from the web by searching
for text that is better matched to a conversational speaking style. We also show how we can make better use
of this new data by applying class-dependent interpolation.

2 Collecting Text from the Web

The amount of text available on the web is enormous (over 3 billion web pages are indexed via Google
alone) and continues to grow. Most of the text on the web is non-conversational, but there is a fair amount of
chat-like material that is similar to conversational speech though often omitting disfluencies. This was our
primary target when extracting data from the web. Queries submitted to Google were composed of N-grams
that occur most frequently in the switchboard training corpus, e.g. “I never thought I would”, “I would think
so”, etc. We were searching for the exact match to one or more of these N-grams within the text of the web
pages. Web pages returned by Google for the most part consisted of conversational-style phrases like “we
were friends but we don’t actually have a relationship” and “well I actually I I really haven’t seen her for
years.”

We used a slightly different search strategy when collecting topic-specific data. First we extended the
baseline vocabulary with words from a small in-domain training corpus [18], and then we used N-grams
with these new words in our web queries, e.g. “wireless mikes like”, “I know that recognizer” for a meeting
transcription task [14]. Web pages returned by Google mostly contained technical material related to topics
similar to what was discussed in the meetings, e.g. “we were inspired by the weighted count scheme...”, “for
our experiments we used the Bellman-Ford algorithm...”, etc.

The retrieved web pages were filtered before their content could be used for language modeling. First
we stripped the HTML tags and ignored any pages with a very high OOV rate. We then piped the text
through a maximum entropy sentence boundary detector [15] and performed text normalization using NSW
tools [19].

3 Class-dependent Mixture of LMs

Linear interpolation is a standard approach to combining language models, where the probability of a word243 given history 5 is computed as a linear combination of the corresponding N-gram probabilities from 6
different models: 798 243;: 5=<?>A@BDCFE?G B

7 B 8 243D: 5H<JI
Depending on how much adaptation data is available it may be beneficial to estimate a larger number of
mixture weights G B (more than one per data source) in order to handle source mismatch, specifically letting
the mixture weight depend on the context 5 :798 243K: 5=<L>(@BKCMENG B

8 5=< 7 B 8 243;: 5=<JI
UWEETR-2003-0000 2
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Figure 1: Percent coverage of switchboard training data tokens as a function of the vocabulary size.

One approach is to use a mixture weight corresponding to the source posterior probability G B
8 5=<�> 798PO : 5H<

[23]. Here, we instead choose to let the weight vary as a function of the previous word class, i.e. G B
8 5=<�>

G B
8RQF8 243TSVU <D< . The classes

QF8 2
3TSVU < include part-of-speech tags and the 100 most frequent words which form
their own individual classes. Such a scheme can generalize across domains by tapping into the syntactic
structure (POS tags), already shown to be useful for cross-domain language modeling [7], and at the same
time target conversational speech since the top 100 words cover 70% of tokens in Switchboard training
corpus. Beyond the top 100 words, additional words give relatively small increments in the corpus coverage,
as illustrated in Figure 1.

Combining several N-grams can produce a model with a very large number of parameters, which is
costly in decoding. In such cases N-grams are typically pruned. Here we use entropy-based pruning [20]
after mixing unpruned models. In experiments comparing standard mixtures to class-dependent interpo-
lation, all models use the same pruning parameters (i.e. entropy gain of WYX S[Z ), and we reduce the model
aggressively to about 15% of its original size. In the experiments on the effect of pruning, the threshold is
varied to obtain several models corresponding to a wide range of sizes.

4 Experiments

4.1 Experiment Paradigm

We evaluated our work on two tasks: 1) Switchboard [5], specifically the HUB5 eval 2001 set having a
total of 60K words spoken by 120 speakers, and 2) an ICSI Meeting recorder [14] eval set having a total of
44K words spoken by 25 speakers. Both sets featured spontaneous conversational speech. There were 45K
words of held-out data for each task, used for estimating mixture weights and pruning.

Text corpora of conversational telephone speech (CTS) available for training language models consisted

UWEETR-2003-0000 3



of Switchboard, Callhome English, and Switchboard-cellular, a total of 3 million words. In addition to that
we used 150 million words of Broadcast News (BN) transcripts, and we collected 191 million words of
“conversational” text from the web. For the Meetings task, there were 200K words of meeting transcripts
available for training, and we collected 28 million words of “topic-related” text from the web. We also
collected 66 million words of text from random web pages in order to assess the importance of content
filtering.

The experiments were conducted using the SRI large vocabulary speech recognizer [22] in the N-best
rescoring mode. A baseline bigram language model was used to generate N-best lists, which were then
rescored with various trigram models. All models used in HUB5 experiments, including the baseline, had
identical vocabularies (36546 words). All Meetings results were obtained using a recognizer with this
vocabulary augmented with 413 new words from the Meetings speech training data and related text sources
[18]. Estimation of language models was accomplished by means of the SRI language modeling toolkit
[21], which we extended to allow computation of class-dependent mixtures. All models implemented the
modified Knesser-Ney discounting scheme [3].

4.2 Perplexity and WER results

Table 1 shows perplexity numbers and word error rates (WER) that we achieved on the HUB5 test set
comparing performance of the class-based mixture against standard (i.e. class-independent) interpolation.
The class-based mixture gave better results in all cases except when only CTS sources were used. This may
be due to the fact that these sources are similar to each other, whereas the benefits of class-based mixture
are more evident in cases where data sources are more diverse. We also obtained lower WER by using
the web data instead of BN, which indicates that the web data is better matched to our task (i.e. it is more
“conversational”).

If training data is completely arbitrary, as shown by two examples of using a 66M-word corpus collected
from random web pages, then its benefits to the recognition task are very minimal, if any. In fact, when
combining the random data with the CTS and BN sources by means of a standard mixture we observe a
degradation in performance compared to using just CTS and BN. There is, however, no degradation if we
use class-based mixture to combine the data sources, suggesting that class-based mixtures may be more
robust to mismatch in training data than the traditional class-independent interpolation.

Increasing the amount of web training data from 61M to 191M gave relatively small performance gains.
We “trimmed” the 191M-word web corpus down to 61M words by choosing documents with lowest per-
plexity according to the combined CTS model, yielding the “Web2” data source. The model that used Web2
gave the same WER as the one trained with the original 61M web corpus. It could be that the web text
obtained with “Google” filtering is fairly homogeneous, so little is gained by further perplexity filtering,
which is supported by the fact that the variance in perplexity numbers computed on the “conversational”
web data using the combined CTS model is less than half of that computed on the random web data.

Our results on the Meeting test set are shown in Table 2, where the baseline model was trained on
CTS and BN sources. As in the HUB5 experiments, the class-based mixture consistently outperformed the
standard interpolation. We were able to achieve lower WER by using the web data instead of the meeting
transcripts, but the best results are obtained by using all data sources.

It is evident from Tables 1 and 2 that in the majority of experiments class-based mixtures yield lower per-
plexity of the test set than the corresponding standard mixtures. In several cases, however, WER reductions
were accompanied with an increase in perplexity of the test set. When we take all HUB5 experiments listed
above into account, the correlation between test set perplexity and WER appears to be very strong (0.96).
We also found that 3-gram hit ratio (i.e. percentage of 3-grams in the test data that had explicit probability
estimates in the language model) has a negative correlation of -0.84 with WER.

UWEETR-2003-0000 4



Table 1: HUB5 (eval 2001) perplexity and WER results using standard and class-based mixtures.
LM Data Sources Std. mix Class mix

PPL WER PPL WER
Baseline CTS 96.0 38.9% 96.7 38.9%
+ 150M BN 87.4 37.9% 87.3 37.8%
+ 66M Web (Random) 91.1 38.6% 91.3 38.3%
+ 61M Web 84.1 37.7% 84.5 37.6%
+ 191M Web 83.0 37.6% 82.4 37.4%
+ 150M BN + 66M Web(Rnd) 87.9 38.1% 87.3 37.8%
+ 150M BN + 61M Web 83.9 37.7% 83.5 37.3%
+ 150M BN + 191M Web 83.4 37.5% 82.3 37.2%
+ 150M BN + 61M Web2 83.4 37.7% 83.5 37.3%

Table 2: Meetings results (perplexity and WER).
LM Data Sources Std. mix Class mix

PPL WER PPL WER
Baseline 121.7 38.2% - -
+ 0.2M Meetings 104.0 37.2% 103.2 36.9%
+ 28M Web (Topic) 108.4 36.9% 106.3 36.7%
+ Meetings + Web (Topic) 98.8 36.2% 94.7 35.9%

4.3 Class Assignments

We tried five different class assignments for the class-based mixture on the HUB5 set; the results are shown
in Table 3. Using different data to choose the top 100 words changes the list by only 12 words and does
not impact performance. Using automatically derived classes instead of part-of-speech tags does not lead to
performance gain, nor does it lead to degradation as long as we allocate individual classes for the top 100
words. This result has important implications for porting to new languages: automatic class mapping can
make class-based mixtures feasible for other languages where part-of-speech tags are difficult to derive.

4.4 Pruning Language Models

Very large language models may be too demanding on computational resources. Here we investigate effects
of pruning models on WER in the context of the HUB5 task. We conducted a series of experiments using

Table 3: HUB5 WER using class mixtures of CTS, BN and 61M Web data sources with different class
mappings.

Class mapping WER
35 POS + 100 top words from SWBD 37.3%
35 POS + 100 top words from SWBD & SWBD-cell 37.3%
35 automatic classes + 100 top words from SWBD 37.3%
20 automatic classes + 80 top words from SWBD + POS for bottom 25% of words 37.4%
135 automatic classes 37.5%

UWEETR-2003-0000 5



0 0.5 1 1.5 2 2.5

x 10
7

36.8

37

37.2

37.4

37.6

37.8

Model size (number of N−grams)

W
E

R

Standard mixture
Class−based mixture

Figure 2: The effect of pruning: WER as a function of model’s size.

standard and class mixtures of CTS, BN and 61M Web data sources and pruning the models at various
thresholds of entropy gain (see [20] for details on pruning algorithm).

Entropy-based pruning does not necessarily produce exactly the same number of N-grams when a given
threshold is applied to different models. As a result, models used in Section 4.2, while being comparable,
did not have identical sizes. Here, by varying the pruning threshold we can determine how model size affects
performance and compare the standard and class-based mixtures more thoroughly.

Figure 2 shows the non-linear relationship between WER and the model’s size (total number of N-
grams) for the standard and class-based mixture. It is evident that beyond 5M N-grams (which corresponds
to our normal pruning level of WYX S[Z relative increase in entropy and used for results in Section 4.2) gains
due to additional N-grams diminish rapidly. However, it may still be cost effective to retain up to 10M N-
grams, particularly for the class-based mixture. One can also see that class-based mixture outperformed the
standard mixture regardless of the number of parameters used, with the exception of a small number of cases
where models were very heavily pruned and the difference in performance between the two approaches is
insignificant.

We analyzed three characteristics of the model: 1) increase in model’s entropy relative to the unpruned
model (i.e. the pruning threshold), 2) trigram hit rate on the test set (i.e. percentage of 3-grams in the test
data that had explicit probability estimates in the language model), and 3) perplexity of the test set. Figure 3
illustrates how these three characteristics are affected by the model’s size and how well they correlate with
WER. The correlation coefficients listed in Table 4 show near linear dependencies between WER and the
above three measures with the perplexity having the strongest correlation (0.99). On the log scale, model
size is also well correlated with WER. The perplexity result, in particular, is not consistent with earlier
analyses of language models trained with out-of-domain data [9], which may be because the web sources
are reasonably well matched to conversational speech. Plots in Figure 3 and correlation numbers in Table 4
are based on 13 data points for the standard mixture and 15 data points for the class-based mixture.
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Figure 3: Model’s entropy (in log domain), 3-gram hit rate, and test set perplexity affected by model’s size
and projected onto WER.

Table 4: Correlation between various model characteristics and WER on the HUB5 task using a standard
and a class-based mixtures of CTS, BN and 61M Web data sources.

Model characteristics Correlation with WER
Std. mix Class mix

Model’s size (number of N-grams) -0.84 -0.83\R]_^ Ua` of model’s size -0.96 -0.95
Pruning threshold 0.95 0.97
Perplexity of the test set 0.99 0.99
3-gram hit rate on the test set -0.96 -0.96
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5 Conclusions

In summary, we have shown that, if filtered, web text can be successfully used for training language mod-
els of conversational speech, outperforming some other out-of-domain (BN) and small domain-specific
(Meetings) sources of data. We have also found that by combining LMs from different domains with class-
dependent interpolation (particularly when each of the top 100 words forms its own class), we achieve lower
WER than if we use the standard approach where mixture weights depend only on the data source. Recog-
nition experiments show a significant reduction in WER (1.3-2.3% absolute) due to additional training data
and class-based interpolation. The class-based mixture consistently outperformed the traditional mixture
as we compared the two types of models at various sizes. The experiments have also provided evidence
of a very high degree of correlation between model perplexity on the test data and WER, though this is in
contradiction to other reported results and needs further investigation.
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