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Abstract

This paper presents the generalized multipole, local and translation operators for three dimensional

static potentials of the form r
−λ, where λ is any real number. Addition theorems are developed using

Gegenbauer polynomials. Multipole expansions and error bounds are presented in a manner similar

to those for truncated classical multipole expansions. Numerical results showing error behavior versus

number of terms, distance and λ are presented.
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1 Introduction

The N-body 3D problem involving the Coulombic r−1 Green’s function has been successfully accelerated
using the fast multipole method(FMM) (O(N) method) by Greengard [1] and other related techniques
like [5, 7, 8]. These techniques improve drastically over the classical O(N 2) method by efficiently clustering
sources and observers in a multilevel manner. Furthermore, the FMM is error-controllable, i.e., the truncation
and approximation errors can be predicted in an apriori manner by choosing a specific number of terms in
multipole and local expansions.

A related area of research has been the development of FMM-like methods based on plane-wave expansions
and variations [6] for oscillatory kernels arising in dynamic electromagnetics and acoustics. Apart from the
r−1 and dynamic oscillatory kernels, another class includes potential functions of the form r−λ, where λ is
a positive integer. For example the Van der Waal’s forces, Lennard Jones potentials and H-bonds have the
forms r−6, r−12, r−10 and have important applications in chemistry [10], molecular dynamics [11] and fluid
mechanics [12]. Present computational approaches rely heavily on FMM or related methods for Coulombic
interactions, but do not have the same approaches for the Van der Waal’s forces owing to a lack of exact
multipole expansions (other approaches based on pre-corrected FFT on a uniform grid are topics of current
research). A generalized FMM technique for nonoscillatory kernels based on singular value decomposition
has been presented in [9]. In this paper, to the best of our knowledge for the first time, analytic multipole
expansions are developed for potential functions of the form r−λ, for all real λ. In a manner analogous to the
classical multipole expansions for electrostatic potentials, these expansions are error-controllable and enable
efficient clustering of sources and observers. In the multipole method presented in [1] spherical harmonics
are used. In this paper the well known Gegenbauer polynomials are used instead to deduce the necessary
addition theorems for source-clustering, observer-clustering and cluster-cluster interactions. In doing so all
the necessary operators for a single level FMM for functions of the form r−λ are obtained.
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Figure 1: Two well separated spheres (r > 2a) consisting of N source and N observation points.

The organization of the paper is as follows: in the second section the problem statement is made. The
third section briefly discusses the previous treatment of the case λ = 1 as in [1]. In the fourth section the
required addition theorems for general λ, multipole operators and error bounds are derived. In the fifth
section numerical results are stated. In the last section conclusions are drawn and discussion about the
scope of extending this research are given.

2 Statement of the problem

Consider a sphere containing N source points of strengths qi, located at coordinates (ρi, αi, βi) and a sphere
of N observation points located at (rj , θj , φj) where i, j = 1 . . .N ,as depicted in fig. 1. The two spheres
are well separated so that they are non-overlapping. The total potential at the jth observation point is
given by

∑N
i=1 G(ρi, rj)qi. This paper deals with potential functions of the form G(ρi, rj) = |rj − ρi|

−λ. The
potentials at the N observer points can be represented in the matrix form ΦN×1 = ḠN×NqN×1 where Φ
and q are vectors containing the potentials and the charges at the N source and observer points. The (i, j)th
entry of matrix Ḡ is the potential function G(ρi, rj). The brute force cost of forming Ḡ and then of obtaining
Φ by the matrix vector multiplication is O(N 2). The aim of this paper is to factorize the Ḡ matrix into
L2PN×c, M2Lc×c and Q2Mc×N , c being a small constant number, independent of N and dependent on
the desired accuracy. This reduces the cost of generation and multiplication into O(cN).

3 Classical FMM operators for r
−1

This section summarizes the results for the case λ = 1 as obtained in [1]. The geometry of the problem is
described by fig. 2. The three vectors are Q = (ρ, α, β) and P = (r, θ, φ) and P −Q = (r′, θ′, φ′) in spherical
coordinates. For this geometry φ′ = φ − β,cos γ = cosα cos θ + sin α sin θ cosφ′. It will be assumed that
r > ρ hereafter.

The potential Φj at P due to a unit charge at Q is 1/r′. 1/r′ can be written in the following way using
the generating function of the Legendre polynomials.

1

r′
=

1

r

√

1 − 2 ρ
r cos γ +

(

ρ
r

)2
=

∞
∑

n=0

ρn

rn+1
Pn(cos γ) (1)

where Pn(cos γ) is the Legendre polynomial. The addition theorem for the Legendre polynomials is given
by:

Pn(cos γ) =

n
∑

m=−n

Y −m
n (θ, φ)Y m

n (α, β) (2)

where, Y m
n (θ, φ) =

√

n−|m|
n+|m|P

|m|
n (cos θ)eimφ is the spherical harmonic and, P m

n (cos θ) is the associated

Legenedre function[3].
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Figure 2: Geometry of the problem:P and Q are separated by r′ and subtend an angle γ at the origin. Here
P −Q = (r′, θ′, φ′) and r > ρ

Using (1) and (2) the potential at the jth observation point is converted into the following multipole
expansion :

φj =

p
∑

n=0

n
∑

m=−n

Mm
n

rn+1
j

Y m
n (θj , φj) (3)

where, the multipole expansion Mm
n =

∑N
i=1 qiρ

n
i Y −m

n (αi, βi), p is the number of terms, referred to as the
number of harmonics, that is chosen during truncation of the infinite series in (1). Using (3) the potential
at N points can thus be expressed in the matrix form ΦN×1 = M2PN×(p+1)2 Q2M(p+1)2×N qN×1 where

Q2M(k, j) = ρn
j Y −m

n (αj , βj)

M2P(i, k) =
Y m

n (αi, βi)

rn+1
i

(4)

where i, j = 1, 2 . . .N , k = 1 . . . (p + 1)2. Here the entries of Q2M depend only on the source points and the
entries of M2P depend only on the observation points. To complete the formulation for single level FMM
it is necessary that the M2P matrix be factorized into L2P M2L , where the M2L operator translates the
multipole expansion to a local expansion at a local point in the observation sphere and the L2P operator
transfers the local expansion to the potentials at the observation points. In other words an addition theorem

for the function
Y m

n (θ,φ)
rn+1 is required. This addition theorem has been obtained in [1, ch. 3] and is given by:

Y m′

n′

r′n′+1
=

p
∑

n=0

n
∑

m=−n

Jm′

m Am
n Am′

n′ ρnY −m
n

Am+m′

n+n′

Y m+m′

n+n′

rn+n′+1
(5)

where,

Jm′

m =

{

(−1)min(|m|,|m′|) if m.m′ < 0

1 otherwise

and, Am
n = (−1)n/

√

(n − m)!(n + m)! . Using (5) a multipole expansion at P can be converted into a local
expansion at the origin O in fig. 2. M2P can be expressed as a product of two matrices L2PN×(p+1)2 M2L(p+1)2×(p+1)2

using (5) in a similar manner as in (4). The entries of L2P depend on the observation points and the entries
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of M2L depend on the locations of the centers of the sorce and the observation spheres. Thus the factoriza-
tion Φ = L2P M2L Q2Mq is complete. The rest of this paper will present an analogous approach using
Gegenbauer polynomials instead of Legendre polynomials to solve the general problem for r−λ.

4 Formulation for the function r
−λ

In this section Gegenbauer polynomials are introduced, which will be central to the treatment for general λ.
These are orthogonal polynomials denoted by Cλ

n(x) where n is an integer and λ > −1/2. These polynomials
are also known as ultraspherical polynomials and arise as solutions to the Gegenbauer differential equation:

(1 − x2)y′′ − (2λ + 1)xy′ + n(n + 2λ)y = 0

They are computed by the following recurrence formula [2]:

Cλ
0 (x) = 1

Cλ
1 (x) = 2λx

nCλ
n(x) = 2(n + λ − 1)xCλ

n−1(x) − (n + 2λ − 2)Cλ
n−2(x)

The generating function for these polynomials [2] is given by :

(1 − 2xz + z2)−λ =

∞
∑

n=0

Cλ
n(x)zn ,for|z| < 1 (6)

It is clear from (6) that the Legendre polynomial(λ = 1/2) is a special case of the Gegenbauer polynomial.
This strongly suggests that there might be an extension of Greengard’s method to general values of λ and
lays the ground for this investigation.

4.1 Some Properties of Gegenbauer Polynomials

Notation 1 1.
(

∂
∂x ± i ∂

∂y

)

= ∂±

2. ∂x,y,z = ∂
∂(x,y,z)

3. (λ)m = λ(λ + 1) . . . (λ + m − 1) = Γ(λ+m)
Γ(λ)

4. A(n, m, λ) = (−1)n(n − m)!2m
(

λ
2

)

m

5. T (m, k, λ) = (−1)m+k(λ − 1)2k

(

m
k

)

6. P (r, θ,±φ, n, m, λ) = sinm θ
rn+λ e±imφC

λ/2+m
n−m (cos θ)

The following properties of Gegenbauer polynomials are stated in [2] and will be used later in this paper.

Cλ
n(cos α) =

n
∑

m=0

(λ)m(λ)n−m

m!(n − m)!
cos(n − 2m)α (7)

Cλ
n(x) =

[n/2]
∑

m=0

(−1)m λn−m

m!(n − 2m)!
(2x)n−2m (8)

dm

dxm
Cλ

n(x) = 2m(λ)mCλ+m
n−m(x) (9)

Cλ
n(−x) = (−1)nCλ

n(x) (10)
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Cλ
n(1) =

(2λ)n

n!
(11)

The following theorem appears to be new and is important in the subsequent development, so the proof
is discussed here :

Theorem 1 Let P = (r, θ, φ) ∈ R3, then

∂n−m

∂zn−m

(

∂

∂x
± i

∂

∂y

)m
1

rλ
=

sinm θ

rn+λ
e±imφ(−1)n(n − m)!2m

(

λ

2

)

m

C
λ/2+m
n−m (cos θ)

Proof : The following theorem is stated in Hobson [3]:

fn (∂x, ∂y, ∂z) F (x2 + y2 + z2) =

(

2n dnF

d(r2)n
+

2n−2

1!

dn−1F

d(r2)n−1
∇2 + . . .

+
2n−2t

t!

dn−tF

d(r2)n−t
∇2t + . . .

)

fn(x, y, z)

(12)

where r2 = x2 + y2 + z2. Put F (r2) = 1
rλ . Let r2 = r1, so F (r1) = 1

r
λ/2

1

.

Putting fn (∂x, ∂y, ∂z) = ∂n−m
z ∂m

± :

∂n−m
z ∂m

±

1

rλ
=

(

2n(−1)n

(

λ

2

)

n

1

r2n+λ
+

2n−2

1!
(−1)n−1

(

λ

2

)

n−1

r2

r2n+λ
∇2 + . . .

+
2n−2t

t!
(−1)n−t

(

λ

2

)

n−t

r2t

r2n+λ
∇2t + . . .

)

zn−m(x ± iy)m

= (x ± iy)m

(

2n(−1)n

(

λ

2

)

n

1

r2n+λ
+

2n−2

1!
(−1)n−1

(

λ

2

)

n−1

r2

r2n+λ

d2

dz2
+ . . .

+
2n−2t

t!
(−1)n−t

(

λ

2

)

n−t

r2t

r2n+λ

d2t

dz2t
+ . . .

)

zn−m

= rm sinm θe±imφ (−1)n

r2n+λ

[ n−m
2

]
∑

t=0

(−1)t 2
n−2t

t!

(

λ

2

)

n−t

(n − m)!

(n − m − 2t)!
r2tzn−m−2t

= sinm θe±imφ (−1)n

rn+λ
(n − m)!

[ n−m
2

]
∑

t=0

(−1)t 2
n−2t

t!

(

λ

2

)

n−t

µn−m−2t

(n − m − 2t)!
(

where µ =
z

r
= cos θ

)

= sinm θe±imφ (−1)n

rn+λ
(n − m)!

dm

dµm

[ n
2
]

∑

t=0

(−1)t

t!

(

λ

2

)

n−t

(2µ)n−2t

(n − 2t)!

= sinm θe±imφ (−1)n

rn+λ
(n − m)!2m

(

λ

2

)

m

C
λ/2+m
n−m (cos θ) . . . using (8) and (9).�
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The following identity is known for λ = 1[2], [3]:

∂m
± ∂n−m

z

(

1

r

)

= (−1)n−m(n − m)!
P m

n (cos θ)

rn+1
e±imφ

Thus by putting λ = 1 gives the following identity documented in [2], which describes the relationship
between the Gegenbauer polynomials and the associated Legendre functions:

(−2)m sinm θ

(

1

2

)

m

C
1/2+m
n−m (cos θ) = P m

n (cos θ)

Lemma 1

(∂+∂−)m

(

1

rλ

)

= (−1)m
m
∑

k=0

(−1)k

(

m

k

)

(λ − 1)2k(∂2
z )m−k 1

r2k+λ

Proof : From r = (x2 + y2 + z2)1/2 it may be verified that:

∇2 1

rλ
=

−3λ + λ(λ + 2)

rλ+2
=

λ(λ − 1)

rλ+2

⇒ ∂+∂−

(

1

rλ

)

= −∂2
z

1

rλ
+

λ(λ − 1)

rλ+2

⇒ (∂+∂−)2
1

rλ
=∂4

z

1

rλ
− 2λ(λ − 1)∂2

z

1

rλ+2
+

(λ + 2)(λ + 1)λ(λ − 1)

rλ+4

By induction the proof is completed :

(∂+∂−)m 1

rλ
= (−1)m

m
∑

k=0

(−1)k(λ − 1)2k

(

m

k

)

(∂2
z )m−k 1

rλ+2k
�

Corollary 1

∂n−a
z ∂b

+∂a−b
−

(

1

rλ

)

=

m
∑

k=0

T (m, k, λ)A(n − 2k, |a − 2b|, λ + 2k)

P (r, θ, sgn(2b − a)φ, n − 2k, |a− 2b|, λ + 2k)

where m = min(b, a − b),sgn(2b− a) gives the sign of 2b − a.

Proof : Let b = min(b, a − b). Then,

∂n−a
z ∂b

+∂a−b
−

(

1

rλ

)

= ∂n−a
z ∂a−2b

− (∂+∂−)b

(

1

rλ

)

= ∂n−a
z ∂a−2b

−

b
∑

k=0

T (b, k, λ)(∂2
z )b−k

(

1

rλ+2k

)

...from Lemma 1

=

b
∑

k=0

T (b, k, λ)∂n−a+2b−2k
z ∂a−2b

−

(

1

rλ+2k

)

=

b
∑

k=0

T (b, k, λ)A(a − 2k, a− 2b, λ + 2k)

P (r, θ,−φ, n − 2k, a− 2b, λ + 2k) . . . by Theorem 1

Similarly when a − b = min(b, a − b) it can be shown that a − 2b in the above identity will be replaced
by 2b − a.�
Next the results obtained so far are used to derive the necessary addition theorems required to perform the
single level FMM on the potential function r−λ.
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4.2 Addition Theorems

From (6) the following can be written for the given geometry(fig. 2 ):

1

r′λ
=

∞
∑

n=0

ρn

rn+λ
Cλ/2

n (cos γ) (13)

One may be tempted to use the following addition theorem for the Gegenbauer polynomials which is well
known [2, 4]:

Cλ
n(cos γ) =

n
∑

m=0

4m(2λ + 2m− 1)(n − m)!
[(λ)m]2

(2λ − 1)n+m+1
(sin α)mCλ+m

n−m(cosα)

×(sin θ)mCλ+m
n−m(cos θ)Cλ−1/2

m (cos(φ − β))

where γ, α, β, θ and φ are angles as shown in figure 2. However unlike (2) the above equation is not in a

completely separated form because of the last term C
λ−1/2
m (cos(φ − β)), making it difficult to represent the

multipole, translation and local operators elegantly. So alternative addition theorems are developed to aid
in elegant and readily applicable formulation of the required operators.

Theorem 2 For any two vectors Q = (x′, y′, z′) ∈ R3 and P = (x, y, z) ∈ R3 as shown in fig. 2

(

x′

ρ
∂x +

y′

ρ
∂y +

z′

ρ
∂z

)n
1

rλ
= (−1)nn!

C
λ/2
n (cos γ)

rn+λ

where ρ = ||Q||,r = ||P||,γ is the angle between the vectors P and Q.

Proof: Consider that:

1

(r2 − 2rρ cos γ + ρ2)λ/2
=

1

((x − x′)2 + (y − y′)2 + (z − z′)2)λ/2

Taylor’s series expansion of the left hand side gives (13). One may expand the right hand side by Taylor’s
theorem in powers of either x, y, z or x′, y′, z′. Because the nth power terms are the same on both sides the
relationship is obtained :

(rρ)nCλ/2
n (cos γ) = r2n+1

∑∑∑ (−1)n

n!

x′ay′bz′c

a!b!c!

∂a+b+c

∂xa∂ya∂zc

1

(x2 + y2 + z2)λ/2

= ρ2n+1
∑∑∑ (−1)n

n!

xaybzc

a!b!c!

∂a+b+c

∂x′a∂y′a∂z′c
1

(x′2 + y′2 + z′2)λ/2

the summation being taken for all integral values of a, b, c which are such that a + b + c = n. �

Theorem 3 (First addition theorem) For the geometry shown is fig. 2 let the vectors P= (x, y, z), Q=
(x′, y′, z′) and ||P−Q|| = r′ in Cartesian coordinate system then,

1

r′λ
=

∞
∑

n=0

n
∑

a=0

a
∑

b=0

(−1)n
(

n
a

)(

a
b

)

2an!
(z′)n−a(η′)b(ξ′)a−b∂n−a

z ∂b
+∂a−b

−

(

1

rλ

)

(14)

where η′ = x′ + iy′, ξ′ = x′ − iy′ and ∂n−a
z ∂b

+∂a−b
−

(

1
rλ

)

is given by Corollary 1 .

Proof : Let the η′ = x′ + iy′, ξ′ = x′ − iy′. Then,

(xx′ + yy′ + zz′)n =

(

η′ξ

2
+

ξ′η

2
+ zz′

)n

=

n
∑

a=0

a
∑

b=0

(

n
a

)(

a
b

)

2a
(zz′)n−a(η′ξ)b(ηξ′)a−b
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Using (12), one can replace (x, y, z) by (∂x, ∂y, ∂z) and then dividing both sides by ρn and letting both sides
operate on 1

rλ it follows from Theorem 2

C
λ/2
n (cos γ)

rn+λ
=

(−1)n

n!

n
∑

a=0

a
∑

b=0

(

n
a

)(

a
b

)

2aρn
(z′)n−a(η′)b(ξ′)a−b∂n−a

z ∂b
+∂a−b

−

(

1

rλ

)

By substituting
Cλ/2

n (cos γ)
rn+λ by the above result in (13) the proof is completed. �

Theorem 4 (Second addition theorem)

∂n′−a′

z ∂b′

+∂a′−b′

−

(

1

r′λ

)

=
∞
∑

n=0

n
∑

a=0

a
∑

b=0

(−1)n
(

n
a

)(

a
b

)

2an!
(z′)n−a(η′)b(ξ′)a−b (15)

∂n+n′−a−a′

z ∂b+b′

+ ∂a+a′−b−b′

−

(

1

rλ

)

(16)

Proof : By operating both sides of (14) by ∂n′−a′

z ∂b′

+∂a′−b′

− the proof is completed. �

Now it is a simple matter to obtain the multipole expansions and obtain the translation operators required
for performing a single level FMM on the function r−λ.

4.3 Multipole Expansions

In this section, the operators to assist in efficient clustering and cluster-cluster interaction computation will
be derived, in a manner similar to that done by the classical multipole expansion for the restricted case of
λ = 1.

Consider fig. 1 . A total N number of charges of strength qi, i = 1, 2 . . .N are placed in the source
sphere. The radius of both source and observation spheres is a. The distance between the sphere centers is
r > a. The total potential due to the potential function r−λ at each of the N observation points is given by

φj =
∑N

i=0
qi

rλ
ij

, j = 1, 2 . . .N . Now pth order expansions for this configuration are obtained.

1. Multipole Expansion(Q2M, M2P) for Q2M2P: The order p multipole expansion for the jth
observation point is obtained from Theorem 3 and is given by :

φj =

p
∑

n=0

n
∑

a=0

a
∑

b=0

Ma,b
n

(−1)n
(

n
a

)(

a
b

)

2an!
∂n−a

z ∂b
+∂a−b

−

(

1

rλ
j

)

(17)

where Ma,b
n =

∑N
i=0 qi(zi)

n−a(ηi)
b(ξi)

a−b. The center of the source sphere (multipole center) is taken
as the origin. The Q2M operator has N columns. It can be verified that for the jth observation point

number of columns of the M2P matrix = number of rows of the Q2M matrix = (p+1)(p+2)(p+3)
6 .

2. Local Expansion(Q2L,L2P) for Q2L2P: The order p local expansion for the jth observation point
is obtained similarly:

φj =

p
∑

n=0

n
∑

a=0

a
∑

b=0

La,b
n (zj)

n−a(ηj)
b(ξj)

a−b (18)

where La,b
n =

(−1)n(n
a)(

a
b)

2an! ∂n−a
z ∂b

+∂a−b
−

(

1
rλ

i

)

. The center of the observation (local center) sphere is taken

as the origin. The Q2L matrix has (p+1)(p+2)(p+3)
6 rows and N columns, while the L2P operator has

(p+1)(p+2)(p+3)
6 columns for the jth charge.

3. Translation operator(M2L)for Q2M2L2P:An order p multipole expansion at the multipole center
can be converted into a local expansion at the local center using the second addition theorem:
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φj =

p
∑

n′=0

n′

∑

a′=0

a′

∑

b′=0

Na′,b′

n′ (zj)
n′−a′

(ηj)
b(ξj)

a′−b′ (19)

where,

Na′,b′

n′ =
(−1)n′

(

n′

a′

)(

a′

b′

)

2a′n′!

p
∑

n=0

n
∑

a=0

a
∑

b=0

Ma,b
n

(−1)n
(

n
a

)(

a
b

)

2an!

∂n+n′−a−a′

z ∂b+b′

+ ∂a+a′−b−b′

−

(

1

rλ

)

Thus the factorization Φ = L2P M2L Q2Mq is complete. To summarize, given an N point source
sphere and an N point observation sphere each of radius a and separated by a distance r > 2a as

depicted in fig. 1, first construct the Q2M matrix of dimension (p+1)(p+2)(p+3)
6 ×N placing the origin

at the center of the source sphere(multipole center). The matrix Q2M is a function of only the

source points. Then construct the M2L matrix of dimension (p+1)(p+2)(p+3)
6 × (p+1)(p+2)(p+3)

6 as a
function of the multipole center and the center of the observer sphere(local center). This operation
transfer the multipole expansion into a local expansion. Next construct the L2P matrix of dimension

N × (p+1)(p+2)(p+3)
6 by placing the origin at the local center which transfers the local expansion to

the total potential at each observation point. Thus L2P is a function only of the observation points.
Finally compute L2P M2L Q2Mq. The total cost of this process is O(p3N).

4.4 Error bounds:

Lemma 2 |Cλ
n(x)| ≤ Cλ

n(1) for |x| ≤ 1.

Proof: This is obvious from (7), the maximum value is attained by putting θ = 0.�

Theorem 5 Let a charge of unit strength be placed at the Q(fig. 2), let the total potential at P be φA and
let φp

A be the multipole expansion of the p th order, then the error is given by:

|φA − φp
A| ≤

1

rλ

(ρ

r

)p+1

(λ)p+1
1

(1 − ρ
r )λ+p+1

Proof: |φA − φp
A| = | 1

r′λ −
∑p

n=0
ρn

rn+λ C
λ/2
n (cos γ)|

= |

∞
∑

n=p+1

ρn

rn+λ
Cλ/2

n (cos γ)|

≤
1

rλ

(ρ

r

)p+1 ∞
∑

n=0

(ρ

r

)n

|C
λ/2
n+p+1(1)| . . . from Lemma 2

=
1

rλ

(ρ

r

)p+1 ∞
∑

n=0

(ρ

r

)n (λ)n+p+1

(n + p + 1)!
. . . from (11)

≤
1

rλ

(ρ

r

)p+1

(λ)p+1

∞
∑

n=0

(ρ

r

)n (λ + p + 1)n

(n)!

=
1

rλ

(ρ

r

)p+1

(λ)p+1

∞
∑

n=0

(ρ

r

)n

C(λ+p+1)/2
n (1)

=
1

rλ

(ρ

r

)p+1

(λ)p+1
1

(

1 − ρ
r

)λ+p+1
�

Now it is straightforward to find the total error due to N charges.
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Table 1: Memory requirements and average CPU times for computations.λ = 2, r/a = 10, p = 3
N T1 t1 M1 T2 t2 M2 Rel. error
100 1.24e-02 2.13e-03 10000 1.04e-02 8.66e-04 8800 4.98e-06
300 1.12e-01 2.23e-02 90000 2.72e-02 2.73e-03 24800 5.47e-06
500 3.15e-01 6.21e-02 250000 4.39e-02 5.06-03 40800 4.82e-06
700 6.15e-01 1.23e-01 490000 6.00e-02 8.00e-03 56800 4.56e-06
1000 1.25e+00 2.54e-01 1000000 8.50e-02 1.10e-02 80800 4.84e-06
2000 5.15e+00 9.95e-01 4000000 1.68e-01 2.00e-02 160800 4.67e-06
3000 1.17e+01 2.29e+00 9000000 2.50e-01 3.00e-02 240800 4.82e-06

Corollary 2 Let there be N charges of strengths q1, q2 . . . qN within a radius a then the total error due to
multipole expansion of order p at a point j at a distance r > a from the center of the sphere is given by:

|φj − φp
j | ≤ A

1

rλ

(a

r

)p+1

(λ)p+1
1

(1 − a
r )λ+p+1

where A =
∑N

i=0 |qi|.

This gives the error bound for the computations.

5 Numerical Results

In this section error behaviour and computational requirements are discussed. The operators developed in
this paper have been tested on an AMD Athlon 1500 platform. Following are the results of the simulation:

1. Error behavior: Fig. 3 - 6 plot the relative errors versus the number of multpoles(p) used to compute
the potential. The relative error is given by ||C1 − C2||/||C1||, where C1 is the potential computed
by direct method and C2 is the potential computed by the multipole method developed in this work.
The error shows an exponential falloff with the increase in the number of multipoles while there is a
slight worsening of the error with increase in λ. The significant point to note here is that the scheme
works for all real λ although the Gegenbauer polynomial is defined only for λ > −1/2. (This condition
ensures a real and integrable weight function for the orthogonal polynomial, see [2]). The explanation
for this is as follows: although Gegenbauer polynomials are not defined for λ < −1/2 the identity
(6) holds true for all λ because it is simply a Taylor series expansion as long as the polynomial is
defined by identity (8). Theorem 1 is a consequence of identity (8) and hence it also holds true for all
λ. All the subsequent addition theorems, i.e., theorems 2-4 follow from Taylor’s series expansions and
theorem 1, thus they all numerically hold true for all λ These polynomials cannot be called Gegenbauer
polynomials when λ < −1/2, but one can still use them for the numerical method given in this paper
as the theorems discussed here hold true for all λ ∈ R. Hence although the Gegenbauer polynomials
are not defined for λ < −1/2, still the scheme appears to work numerically. Fig. 7 depicts the error
falloff with increasing distance r/a. A comparison with the error bound(corollary 2) is also shown. It
can be seen that the error bound derived here is rather loose.

2. Computational time and memory requirements: Table 1 compares the memory requirements and av-
erage CPU times for the direct method (Q2P) and the multipole method (Q2M2L2P). N is the total
number of source and observation points, T1 is the average CPUtime for setup for Q2P, t1 is the average
matrix vector product CPUtime for Q2P, T2 is the average CPUtime for setup for Q2M2L2P, t2 is
the average matrix vector product CPUtime for Q2M2L2P, M1 is the total number of double preci-
sion numbers stored during Q2P, M2 is the total number of double precision numbers stored during
Q2M2L2P (4N(p + 1)(p + 2)(p + 3)/6 + 2 ((p + 1)(p + 2)(p + 3)/6)

2
). Note that each element of the

matrices Q2M, M2L, L2P requires two double precision numbers, one for the real part and the other
for the imaginary part, while each element of Q2P matrix is a real number and hence requires a single
double precision number.
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3. Comparison with standard FMM for λ = 1: Figure 8 shows that the accuracy and error behaviour for
the case λ = 1 in this formulation is comparable to the standard method [1]. However, the memory
and time requirements in the standard method is of order O(p2N) while this formulation is of O(p3N).

6 Conclusions

The formulation for performing single level FMM of arbitrary λ has been developed. This work can be viewed
as a generalization of the well known particular case of λ = 1. This work can be extended to multilevel
FMM following the same method as factorization of M2P into L2P, M2L. This will find applications to
static problems which have potential function r−λ, particularly in fast evaluation of Van der Waal’s forces
and Lennard Jone’s potentials in computational chemistry.
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Figure 3: Error for Q2M2P operation versus p for positive λ
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Figure 4: Error for Q2M2P operation vs p for negative λ
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Figure 5: Error for Q2M2L2P operation versus p for positive λ
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Figure 6: Error for Q2M2L2P operation vs p for negative λ
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Figure 7: Error vs r/a and comparison with the error bound as in corollary 2
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Figure 8: Comparison with the standard method for the case λ = 1
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