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Abstract

We show that Queyranne’s algorithm for finding a non-trivialminimizer of a symmetric submodular function can
be used as a clustering algorithm. For submodular clustering criterion, such as graph-cut or minimum description
length based criteria, we can find the optimal clustering for2 clusters, and near optimal clusterings for more than
2 clusters. Due to results by Rizzi and Nagamochi and Ibaraki, the algorithm can also be used for more general
functions, allowing it to be used for various other criteriasuch as the single-linkage criterion.
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The goal of data clustering is to find a partition of the data (feature vectors, points in a metric space, random
variables, pixels in images, etc.) into sets of similar items. This is perhaps one of the most common and widely used
unsupervised data analysis technique. Clustering often appears under different names, such as mixture modeling, di-
mensionality reduction, voronoi tessellation, vector quantization, phylogenetic tree analysis, and image segmentation.
Broadly speaking, there are two reasons for clustering data. The first is for general data analysis and exploration.
In this case, the clustering is used to analyze, visualize, and represent high-dimensional, and high volumes of data
to reveal attributes of the data that are not immediately obvious. The second reason is to produce an intermediate
representation that is used to generate other results. For example, clustering is often used to determine probabilistic
mixture models (such as mixtures of Gaussians) which might then be used for classification.

Because there are so many different and varied applicationsfor clustering, there are many different algorithms, and
many different criteria for clustering. The different clustering techniques can be categorized into two broad classes.
The first consists of techniques that specify an objective function for clustering, and an algorithm for optimizing
(perhaps heuristically) this objective function. This includes algorithms such as the many variants of K-Means (or
Lloyd’s algorithm) [30, 29, 2, 11], Spectral clustering (which was shown to approximately minimize a balanced cut
criterion) [31, 22, 35], and various graph based algorithms[24, 1, 6, 12, 35, 18, 23]. The second class of techniques
generate the clustering as the result of an algorithmic process, without a clearly defined objective function. We include
in this class algorithms that are used primarily for visualization of the data. Examples include multidimensional scaling
(perhaps coupled with matrix based algorithms) [8, 5] and self-organizing maps [25, 19].

In this chapter, we restrict our attention to only the first class. We show that some commonly used clustering
objective functions are either submodular functions, or reducible to submodular functions. As a result, Queyranne’s
algorithm for minimizing symmetric submodular functions can be used for finding the optimal clustering into two
clusters. Further we can find clusterings which are within a constant factor of optimal when more than two clusters
are required. For some of the submodular criteria considered in this chapter, there are alternate algorithms which
can be used to determine the optimal clustering (for two clusters). In fact, as each of these alternate algorithms work
only on a specific objective function (instead of the entire class of submodular functions), they can be much faster
than Queyranne’s algorithm. For example, when the criterion is an undirected or directed graph cut criterion, we
can use either a flow based algorithm [15, 13], or other dedicated graph cut algorithms [17, 36] to find the optimal
solutions. Similarly when the objective function is the single linkage criterion, then we might use MST algorithm
[9, 20] for finding the optimal solution. These algorithms are faster than Queyranne’s algorithm as they are able to
exploit problem specific information. However none of thesealgorithms can, for example, optimize a (positive linear)
combination of of the different criteria. However, since the class of submodular functions is closed under positive
linear combinations (and a number of other operations), Queyranne’s algorithm can be used for this purpose.

In this chapter, we also present other submodular criteria for which algorithms which guarantee optimality (even
for two clusters) were not previously known. For example, weshow that Minimum Description Length criterion
[26] is submodular, and as a result, resolve an open problem of finding the optimal 2-clustering with respect to this
objective. Besides the optimality result for the MDL criterion, the chief contribution of this chapter is to show that the
same algorithmcan be used to optimize a number of widely used criteria, and hence can be used for many application
specific criterion derived from combinations of simpler submodular functions for which efficient algorithm are not
known.

1 Background and Notation

A clusteringof a finite setS is a partition{S1, S2, . . . , Sk} of S. Therefore,S = ∪k
i=1Si, andSi ∩ Sj = φ if and

only if i 6= j (in particularSi 6= φ for all 1 ≤ i ≤ k). We will call the individual elements of the partition the clusters
of the partition. If there arek clusters in the partition, then we say that the partition is ak-clustering. LetCk(S) be the
set of allk-clusterings for1 ≤ k ≤ |S|. Formally, the clustering problem can be described as follows.

Problem 1 (Clustering). Given a finite setS, and a clustering criterionJk : Ck(S)→ R, find

argmin
{A1,A2,...,Ak}∈Ck(S)

Jk ({A1, A2, . . . , Ak})

It is shown in [20] that|Ck(S)|, the number ofk-clusteringss for a base setS of size|S| = n > k is approximately
kn/k!. There are two consequences of this:
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Figure 1: The Graph-Cut criterion: The cost of the clustering is the sum of the weights of the edges that are
between elements of different clusters. If all edges have weight 1, thenJgc

2 ({1, 2, 5} , {3, 4, 6, 7, 8}) = 4 and
Jgc

2 ({4, 5, 7} , {1, 2, 3, 6, 8}) = 7.

1. The objectiveJk : Ck(S)→ R cannot be represented as a table of values for every element of Ck(S). Therefore,
Jk must have some structure allowing for efficient representation.

2. Exhaustive enumeration to select the optimal partition is not (efficiently) possible. Hence algorithms that deter-
mine the optimal solution must exploit the structure ofJk.

The structure ofJk is often either derived from a probabilistic model, or from apairwise similarity or distance measure.
We now list some criteria which are submodular, and hence canbe optimized using Queyranne’s algorithm.

1.1 The Graph-Cut Criterion

Suppose thatS is the vertex set of a graphG = (S, E), and letw : E → R
+ assign weights to edges ofG. The

weightw({x, y}) is assumed to be a measure of similarity betweenx andy. Hence ifx andy are very similar, then
w({x, y}) is large, whilew({x, y}) is small if the objects are very dissimilar. If the edge{x, y} is not present in the
graph(so{x, y} 6∈ E), the it is assumed thatw({x, y}) = 0. The graph-cut criterion is given by

Jgc
k ({A1, A2, . . . , Ak}) =

∑

{ai,aj}∈E

ai∈Ai,aj∈Aj ,Ai 6=Aj

w({ai, aj})

In other words, the cost of the clustering is the weights of the edgesbrokenby the partition. Figure 1 illustrates this
criterion fork = 2. The emphasized edges are the edges that do not have both endsin the same partition, and hence
are the edges that arebrokenby the clustering.

Let us denote byE(A) the set of edges that have (at least) one end inA. Let |E(A)| be the sum of the weights of
the edges inE(A). The edges that are broken by the partition{A, S \A} are the edges that are adjacent to bothA and
S \A, namelyE(A) ∩ E(S \A). As was pointed out in Example??, the function

γgc(A) = |E(A)| =
∑

{a,b}∈E

a∈A or b∈A

w({a, b})

is an increasing submodular function. Therefore the functionf : 2S → R given by

f(A) =
γgc(A) + γgc(S \A)

2
− γgc(S) =

∑

{a,b}∈E

a∈A,b∈S\A

w({a, b})

is a symmetric submodular function by Lemma?? and becauseγ(S) is a constant. Observe that this is exactly the
number of edges broken by the cut. Therefore,

J sc
2 ({A, S \A}) = f(A)
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and therefore we can use Queyranne’s algorithm to findargminJgc
2 . Note that there are alternate algorithms that can

also compute the minimum of this function such as those described in [15, 13, 17, 36]).
However, the problem of finding the minimum ofJgc

k for k > 2 is NP-complete in general (though it can be solved
in time polynomial in|S|, and exponential ink, yielding a tractable algorithm for small values ofk). Observe that

J sc
k ({A1, A2, . . . , Ak}) =

∑k
i=1 γgc(Ai)

2
− γgc(S) =

∑

{ai,aj}∈E

ai∈Ai,aj∈Aj ,Ai 6=Aj

w({ai, aj})

Observe that findingargminJk is equivalent to finding

argmin
{A1,A2,...,Ak}

k
∑

i=1

γgc(Ai)

While finding the solution to this problem is NP-complete, Queyranne’s algorithm yields an approximation algorithm
for this problem, with approximation guarantee2(1− 1/k) for k > 2.

1.2 The Feature-Similarity Criterion

Let F be a collection of features. Each objects ∈ S is associated with some subset of these features. In this case, we
would like to define similarity between objects (or sets of objects) in terms of the number of shared features. In other
words, two objectss1, s2 ∈ S are very similar ifs1 ands2 have a large set of features in common. We can construct a
bipartite graphG = (S, F, E), so that there is an edge{s, f} ∈ E if the objects has the featuref . Let Γ : S → 2F

map objects to the set of features that that the objects are associated with:

Γ(s) = {f ∈ F : {s, f} ∈ E}

We can extend this function to subsets ofS:

Γ(A) =
⋃

s∈A

Γ(s) = {f ∈ F : ∃ {s, f} ∈ E for somes ∈ A}

So for the bipartite graph shown in Figure 2,Γ({1, 2, 5}) = {A, B, D, E}, andΓ({3, 4, 6}) = {B, C, D, E, F}. We
may associate weights with features, and so we define

γfs(A) =
∑

f∈Γ(A)

w(f)

Like γgc defined in the previous section,γfs is also an increasing submodular function.
We measure the degree of similarity of two subsets ofS by the (weighted) number of features common to both

sets. In other words, if{A, S \A} is a partition, then the weight of the shared features is given by

f(A) =
γfs(A) + γfs(S \A)

2
− γfs(S) =

∑

{ f∈F :{a,f}∈E,{b,f}∈E,a∈A,b∈S\A}

w(f)

The functionf : 2S → R a symmetric submodular function by Lemma??and becauseγfs(S) is a constant. Therefore,

J fs
2 ({A, S \A}) = f(A) =

γfs(A) + γfs(S \A)

2
− γfs(S)

can be minimimized using Queyranne’s algorithm. Fork > 2, we take

J fs
k ({A1, A2, . . . , Ak}) =

k
∑

i=1

γfs(Ai)

and findingargminJk is NP-complete fork > 2. As in the previous section, Queyranne’s algorithm yields an approx-
imation algorithm for this problem, with approximation guarantee2(1− 1/k) for k > 2.

UWEETR-2006-0001 4
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Figure 2: The Bipartite graph for the Feature-Similarity criterion. The cost of a partition is the weight of the common
features. In this case,Γ({1, 2, 5}) = {A, B, D, E}, andΓ(3, 4, 6) = {B, C, D, E, F}. Therefore, the set of common
features is{B, D, E}, and so the cost of the partition isw(B) + w(D) + w(E).

1.3 The Minimum Description Length Criterion

Supppose thatS is a collection of random variables for which we have a (generative) joint probability model. Since
we have the joint probabilities of all subsets of the random variables, the entropy of any subset ofS is well defined.
The expected coding (or description) length of any collection T ⊆ S of random variables using an optimal coding
scheme is known to be the Shannon entropy of the set of random variables, denotedH(T ). The partition{S1, S2} of
S that minimizes the coding length is thereforearg min{S1,S2}∈C2(S) H(S1) + H(S2). Now,

argmin
{S1,S2}∈C2(S)

H(S1) + H(S2) = argmin
{S1,S2}∈C2(S)

H(S1) + H(S2)−H(S)

= argmin
{S1,S2}∈C2(S)

I(S1; S2)

whereI(S1; S2) is the mutual information betweenS1 andS2 becauseS1 ∪ S2 = S for all {S1, S2} ∈ C2(S),
Therefore, the problem of partitioningS into two parts to minimize the description length is equivalent to partitioning
S into two parts to minimize the mutual information between the parts. It was shown in Chapter 2 thatH is an
increasing submodular function (likeγgc andγfs defined in the previous sections), and the functionf : 2S → R

defined byf(T ) = I(T ; S \ T ) is symmetric and submodular. Therefore,

J2({A,S \A}) = I(A; S \A) = H(A) + H(S \A)−H(S)

Clearly the minima of this function correspond to partitions that minimize the mutual information between the parts.
Therefore, the problem of partitioning in order to minimizethe mutual information between the parts can be reduced
to a symmetric submodular minimization problem, which can be solved using Queyranne’s algorithm in timeO(|S|

3
)

assuming oracle queries to a mutual information oracle. While implementing such a mutual information oracle is
not trivial, for many realistic applications (including one we consider in this paper), the cost of computing a mutual
information query is bounded above by the size of the data set, and so the entire algorithm is polynomial in the size of
the data set.

Fork > 2, we can similarly define

Jk({A1, A2, . . . , Ak}) =

k
∑

i=1

H(Ai)

sinceH(Ai) is the description length of the clusterAi. While this problem is also NP-complete, Queyranne’s algo-
rithm yields a2(1− 1/k) factor approximation for it.
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1.4 The general setup

We will assume the following setup. We are given an increasing submodular functionF : 2S → R. We can use this
function to create a symmetric submodular functionf : 2S → R given by

f(X) = F (X) + F (S \X)− F (S)

As this is symmetric and submodular, this function can be minimized using Queyranne’s algorithm, and hence we can
find the optimal 2-parititon that minimizes the clustering criterion

Jk({A1, A2, . . . , Ak}) =

k
∑

i=1

F (Ai)

Observe that the functionf ′(X) = F (X)+F (S\X) could have just as easily been used as the symmetric submodular
function to minimize as the addition of the constantF (S) cannot alter the optimal solution. However, we prefer to use
f for two reasons. First, it is a direct generalization of the graph cut function. To see the second reason, observe that
for anyX ⊆ S, and for any symmetric submodular functionf ′′ : 2S → R, we must have

2f ′′(X) = f ′′(X) + f ′′(S \X) ≥ f ′′(φ) + f ′′(S) = 2f ′′(S)

Therefore settingf ′′(S) = 0 acts as a kind of normalization. It further ensures thatf ′′ is always non-negative.
Therefore, we will prefer to usef instead off ′. We use this normalization property off ′ in the construction of the
Gomory-Hu tree in the next section.

2 Gomory-Hu Trees and Approximations

It was shown in Section?? that Queyranne’s algorithm returns an (approximate) minimizer of an (approximately)
symmetric submodular function. Therefore, we may use Queyranne’s algorithm to find the optimal 2-partition for a
symmetric submodular criterion. In this section, we consider the problem of findingk-clustering. Because the problem
of finding ak-partition is NP-complete for the graph-cut function [34],which is a symmetric and submodular function,
the more general problem of finding ak-partition for symmetric submodular functions is NP-complete.

In [16], Gomory and Hu showed how to construct a tree which essentially “encodes” all the solutions to all
optimization problems of the form

min
X∈S(x,y)

f(X)

whenf(X) is the Graph-Cut criterion,x, y are distinct elements ofS, andS(x, y) is the collection of sets that contain
x, but do not containy:

S(x, y) = {X ⊆ S : x ∈ S, y 6∈ S}

In other words,S(x, y) is the collection of subsets ofS that seperatex from y. The Gomory-Hu tree is a spanning
tree on the vertex setS, whose edges have weights associated with them. Since it is atree, the removal of any edge
disconnects it, and hence produces a partition ofS into two parts. The key property of the tree is this: For everypair
of verticess, t ∈ S, there is a unique path in the tree betweens andt. Let e1, e2, . . . , em be the set of edges on this
path, and letw(e1), w(e2), . . . , w(em) be the corresponding weights. Ifek is the edge with the smallest weight, then
the removal ofek produces a partition{Ss, St} wheres ∈ Ss andt ∈ St, andSs is the (approximate) solution to
argminX∈S(s,t) f(X).

Goemans and Ramakrishnan [14] observe that such a tree (alsocalled a cut-equivalent tree) exists for every sym-
metric submodular function. It is also observed in [14] thata Gomory-Hu tree for any symmetric submodular function
can be constructed by|S| − 1 calls to a procedure that finds solutions to problems of the form argminX∈S(s,t) f(X).

While the Gomory-Hu tree has many applications, we shall be interested in using it to produce approximately
optimal clusterings. Saran and Vazirani [34] showed that bydeleting thek − 1 lightest weight edges of the Gomory-
Hu tree for the graph-cut function produced a partition which was within a factor of2(1−1/k) of the optimal partition
with respect to the graph-cut criterion. We will show that this result also holds for the Gomory-Hu tree for arbitrary
symmetric submodular functions. We will also use the Gomory-Hu tree to show that a recursive bisection algorithm
yields the same approximation ratio.
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Figure 3: The graph cut function for any graphG = (V, E) is a symmetric and submodular function. Merging any
subset of the vertices, for example{A, E, F}, to form a single node yields a new graph, and hence a new graphcut
function.

2.1 Construction of a Gomory-Hu tree for symmetric submodular functions

Queyranne’s algorithm works by repeatedly identifying pendent-pairs, and then merging the pair of elements identified.
A pendent-pair(t, u), defined in Definition??, satisfies

{u} ∈ argmin
U∈S(u,t)

f(U)

In other words, if(t, u) is a pendent-pair, then either{u} minimizesf (over all all non-trivial subsets ofS) or the
minimizer

argmin
X∈S(x,y)

f(X)

can be chosen so that it does not separateu from t. For the second case, we can mergeu andt, treating them as a
single element, and the minimum for this merged function yields the minimum for the original function.

The idea of merging elements to generate a function on a smaller set of elements is also central for the construction
of the Gomory-Hu tree. For this application, we will need to merge arbitrary sets (i.e., more than a pair of elements)
into a single element. As for the case of merging pairs, the operation of merging sets results in a symmetric submodular
function defined on a smaller set.

Lemma 1. Suppose thatf : 2S → R is a symmetric submodular function. LetA ⊆ S. By merging the elements ofA
into a single elementmA we get the setSA = (S \A) ∪ {mA}, and the functionfA : SA → R defined by

fA(X) =

{

f(X) if X ⊆ (S \A) (and somA 6∈ X)

f((X −mA) ∪A) if mA ∈ X

is symmetric and submodular.

As an example, consider the graph shown in Figure 3. Merging the set of vertices{A, E, F} results in a new graph
with fewer vertices. The graph cut function on this reduced vertex set is also symmetric and submodular.

The following lemma was presented in [16] for graph-cut functions. The proof generalizes immediately to sym-
metric submodular functions.

Lemma 2. Suppose thata, b ∈ S are distinct elements, and

A ∈ argmin
X∈S(a,b)

f(X)

If c, d ∈ A are distinct elements, then we can find an element

C ∈ argmin
X∈S(c,d)

f(X)

so that eitherS \A ⊆ C or S \A ⊆ S \ C.

UWEETR-2006-0001 7



Proof. Let us denote byA the setS \A. By the symmetry off , we must have

A ∈ argmin
X∈S(b,a)

f(X)

In particular,b ∈ A, and therefore eitherb ∈ A ∩ C or b ∈ A ∩ C. Let us consider both these cases.

1. Supposeb ∈ A ∩ C. Becausec ∈ C we must havec ∈ A ∪ C. Sinced 6∈ C andd 6∈ A, we must have
A ∪ C ∈ S(c, d). Therefore, by the minimality ofC we have

f(C) ≤ f(A ∪ C)

Further,b ∈ A ∩ C anda 6∈ A ∩C. ThereforeA ∩ C ∈ S(a, b) and hence

f(A) = f(A) ≤ f(A ∩C)

Adding these two inequalities, we get

f(A) + f(C) ≤ f(A ∩C) + f(A ∪ C)

By the submodularity off , we have

f(A) + f(C) ≥ f(A ∩ C) + f(A ∩B)

Therefore, equality must hold. In particular, it follows that

f(C) = f(C ∪A)

Hence the minimizer can be chosen so that it does not separatethe elements ofA.

2. Supposeb ∈ A ∩ C. Becausec 6∈ C andc 6∈ A, we must havec 6∈ C ∪ A. Therefore,C ∪ A ∈ S(d, c) and
hence

f(C) ≤ f(A ∪ C)

Becauseb ∈ A ∩ C, and becausea 6∈ A ∩C we haveA ∩ C ∈ S(a, b), and hence

f(A) ≤ f(A ∩ C)

Combining with the submodular inequality, we getf(C) = f(C ∪A).

Therefore, the minimizer can be chosen to not separate the elements ofA in this case as well.

Therefore, ifA ∈ argminX∈S(a,b) f(X), then for any distinctc, d ∈ A, we can treat the elements inA as an atomic

unit ( by merging the elements ofA). We formalize this in the following corollary.

Corollary 3. Suppose thatA ∈ argminX∈S(a,b) f(X), andc, d ∈ A are distinct elements. If

C′ ∈ argmin
X∈SA(c,d)

fA(X)

thenC ∈ argminX∈S(c,d) f(X) where

C =

{

C if mA 6∈ C′

(C −mA) ∪A if mA ∈ C′

This observation is used in Algorithm 1 for constructing theGomory-Hu tree (also called the cut-tree). This
observation, and Algorithm 1 was first given by [16] for the case of a graph cut function. However, the generalization
to symmetric submodular functions is immediate.

Figure 4 displays the first few steps in the running of Algorithm 1 for the graph cut function for the graph shown.
Now, Pi is a partition ofS for every1 ≤ i ≤ |S|, with P1 consisting of a single partition with all the elements of

S, andP|S| putting each element in a partition by itself. At each iteration, the pair(Pi, Ei) forms a tree. Therefore,
after|S| iterations, the edges are between partitions that consist of exactly one element each. By identifying the edges
between partitions that consist of one element each with an edge between the (unique) element of the partitions, we
get a tree with vertex setS. This is the Gomory-Hu tree for(S, f), and we denote it by(S, E). We now show some
properties of this tree.

UWEETR-2006-0001 8
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Figure 4: The first four steps in the running of Algorithm 1 forthe graph cut function on the graph shown. The graph
on the left represents the graph cut functionfi, while the tree(Pi, Ei) is shown on the right. The nodesa andb selected
on line 5 of Algorithm 1 are shown with a thick border, and the cut (A, B) is shown in different colors.
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Data: A setS and a submodular functionf
Result: A Gomory-Hu tree(S, E) for f
P1 ← {S}; E1 ← φ; /* P1 is a partition with 1 part */
for i← 1 . . . |S| − 1 do

/* Invariant : (Pi, Ei) is a tree */
Pick some set (partition)Q ∈ Pi with |Q| ≥ 2;
Pick distincta, b ∈ Q;
Si ← Q ∪ {mR : R ∈ Pi, R 6= Q}; /* Merge all partitions other thanQ /*
Let fi : 2Si → R be the merged function onSi;
FindA ∈ argminX∈S(a,b) fi(A); /* Find the best partition ofSi */
A′ ← Q ∩A; B′ ← Q \A′; /* {A′, B′} is a partition ofQ */
Let Pi+1 ← (Pi \Q) ∪ {A′, B′}; /* Pi+1 is a refinement ofPi */
Enq

i+1 ← {{R, S} ∈ Ei : {R, S} ∈ Ei, R, S 6= Q}; /* Edges not adjacent toQ */
Eqa

i+1 ← {{R, A′} : {R, Q} ∈ Ei, mR ∈ A}; /* Edges adjacent toA′ side ofQ */

Eqb
i+1 ← {{R, B′} : {R, Q} ∈ Ei, mR 6∈ A}; /* Edges adjacent toB′ side ofQ */

Ei+1 ← Enq
i+1 ∪ Eqa

i+1 ∪ Eqb
i+1 ∪ {{A

′, B′}};
end
return (S, E|S|);

Algorithm 1 : GomoryHuTree

Lemma 4. Suppose that the elementsa, b ∈ Q are selected at some iteration1 ≤ i ≤ |S| − 1. Let

A′′ = A′ ∪
⋃

mR∈A

R and B′′ = B′ ∪
⋃

mR∈Si\A

R

wheremR is the node inSi resulting from merging the partitionR ∈ Pi. Then{A′′, B′′} is a partition ofS, and this
partition is the optimal partition that separatesa from b (for f ). In other words

A′′ ∈ argmin
X⊆S(a,b)

f(X)

Proof. This follows immediately from Corollary 3.

We may associate weightsw : E → R with the edges of the Gomory-Hu tree(S, E). The removal of any edge
e ∈ E results in exactly two components. Let{X, S \X} be the corresponding partition ofS, and letw(e) = f(X) =
f(S \X).

Proposition 5. Suppose thata, b ∈ S are any two distinct nodes, and the edgese1, e2, . . . , ek are the edges on the
(unique) path betweena andb in the tree returned by Algorithm 1. Ifei is the minimum weight edge (for1 ≤ i ≤ k),
then the partition{A, B} induced by removing the edgee is the minimum weight partition separatinga fromb (for f ).
In other words,

A ∈ argmin
X∈S(a,b)

f(X)

2.2 Using the Gomory-Hu tree for finding approximatek-partitions

Deleting anyk − 1 edges of the Gomory-Hu tree (or any other tree) results ink components, and hence ak-partition
of S. The goal of this section is to show that if thek − 1 edges chosen are thek − 1 lightest weight edges, then the
resultingk-partition is within a factor 2 of the optimal. Let us denote by L the set of lightest weightk− 1 edges in the
Gomory-Hu tree. The quantity

∑

e∈L w(e) will be quite important, as we will prove bounds in terms of this quantity.
We start with a bound on the the cost of separating any component from the rest of the graph.

Lemma 6. Suppose thatT = (S, E) is a Gomory-Hu tree for(S, F ) with corresponding edge weight function
w : E → R. Suppose that a subsetG ⊆ E of edges are deleted, and thatA is a (connected) component in the

UWEETR-2006-0001 10



A

B-A

S-B

Figure 5: The edges inG′
A going betweenA andS \B are shown dashed, while the edge inGA \G′

A going between
A andB \A is shown as a solid line.

resulting graph. LetGA be the subset ofG that is adjacent to some node inA. Then

f(A) ≤
∑

e∈GA

w(e)

Proof. We prove this result by induction on|GA|. If |GA| = 1, then the result follows from the way weights are
assigned to edges (and in this case, equality holds). Suppose that the result holds for all|GA| < k. Consider the case
when|GA| = k. Let G′ ⊆ G with |G′

A| = k − 1 whereG′
A is the subset ofG′ that is adjacent to some node inA.

Then the removal ofG′
A results in some component that strictly containsA. Let B be this component. Note that ife

is the (unique) edge inGA \G′
A, then the removal ofe separatesB \A from (S \B) ∪A. This is shown in Figure 5.

By the submodular inequality, we have

f(B) + f((S \B) ∪A) ≥ f(A) + f(S)

Sincef(S) = 0 (see discussion in the previous section), we have

w(GA) = w(e) + w(G′
A)

= f(B) + f((S \B) ∪A)

≥ f(A)

Therefore, the result holds when|GA| = k and hence, by induction, the result holds for all values of|GA|.

Corollary 7. Suppose that{B1, B2, . . . , Bk} is the partition obtained by deleting the edges inG, whereG ⊆ E is a
set ofk − 1 edges inE. Then

k
∑

i=1

f(Bi) ≤ 2 ·
∑

e∈G

w(e)

Proof. Observe that each edge inG is adjacent to exactly two sets in{B1, B2, . . . , Bk}. Therefore,

k
∑

i=1

f(Bi) ≤

k
∑

i=1

∑

e∈GBi

w(e) = 2
∑

e∈G

w(e)

UWEETR-2006-0001 11



Lemma 8. Suppose that{A1, A2, . . . , Ak} is anyk-partition ofS. Then

k−1
∑

i=1

f(Ai) ≥
∑

e∈L

w(e)

whereL is a set of thek − 1 lightest weight edges inE. In particular, since the numbering of the elements of the
partition is arbitrary, we have

k
∑

i=1

f(Ai) ≥

(

k

k − 1

)

∑

e∈L

w(e)

Proof. Construct a graph with vertex setVP = {A1, A2, . . . , Ak}. The edges of this graph are

EP = {{Ai, Aj} : {ai, aj} ∈ E with ai ∈ Ai, aj ∈ Aj}

This is a connected graph (because it results from contacting the setAi for 1 ≤ i ≤ k in the Gomory-Hu tree which
is connected). Therefore, we can discard some subset of the edges to make this graph a tree. Let(VP , GP ) be this
tree. For each edgee ∈ GP , there is some edgee′ in the Gomory-Hu tree so that the end pointsai andaj of e′ are in
different partitionAi andAj . In particular, Since both{Ai, S \Ai} and{Aj , S \Aj} separateai from aj , we must
havef(Ai) ≥ w(e′) andf(Aj) ≥ w(e′). Therefore, for each partitionAi, we havef(Ai) ≥ w(e) for each edge that
is adjacent toAi. Therefore,

k−1
∑

i=1

f(Ai) ≥
∑

e∈GP

w(e) ≥
∑

e∈L

w(e)

becauseL was chosen to be the set ofk − 1 lightest weight edges of the Gomory-Hu tree. Now, observe that we can
always number the sets so thatf(Ak) = max {f(A1), f(A2), . . . , f(Ak)}. Hencef(Ak) ≥ 1

k−1

∑k−1
i=1 f(Ai), and

therefore,
k

∑

i=1

f(Ak) ≥

(

k

k − 1

) k−1
∑

i=1

f(Ai) ≥

(

k

k − 1

)

∑

e∈GP

w(e) ≥

(

k

k − 1

)

∑

e∈L

w(e)

In [34], Saran and Vazirani showed that deleting thek− 1 lightest weight edges results in a partition that is within
twice the optimal. We can combine the previous propositionsto obtain a similar result for symmetric submodular
functions.

Proposition 9. Let {B1, B2, . . . , Bk} be the partition obtained by deleting the lightest weightk − 1 edges. Let
{A1, A2, . . . , Ak} be any other partition. Then

k
∑

i=1

f(Bi) ≤ 2

(

1−
1

k

) k
∑

i=1

f(Ai)

Proof.
k

∑

i=1

f(Bi) ≤ 2
∑

e∈F

w(e) ≤ 2

(

1−
1

k

) k
∑

i=1

f(Ai)

Since this holds for anyk-partition{A1, A2, . . . , Ak}, it holds in particular for the optimalk-partition. Therefore,
deleting thek−1 lightest weight edges yields a factor 2 approximation algorithm. However, we are more interested in
approximating the sum

∑k

i=1 F (Bi) instead of the sum
∑k

i=1 f(Bi). The recursive bisection algorithm we describe
in the next section does just this.
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P1 ← {S};
totalCost← 0;
for i← 1 . . . k − 1 do

cost(Q)← min
X⊆2Q\{Q,φ}

[F (X) + F (Q \X)− F (Q)] for all Q ∈ Pi with |Q| > 1;

PickQi to minimizecost(Qi); totalCost← totalCost + cost(Qi);
{Ai, Bi} ← optimal partition ofQi to minimizeF (Ai) + F (Bi)− F (Qi);
Pi+1 ← Pi \Qi ∪ {Ai, Bi};

end

Algorithm 2 : A recursive bisection algorithm

3 Recursive Bisection

In this section, we consider a different algorithm for findingk-partitions. The algorithm The algorithm is quite simple.
There arek iterations, and producek partitions ofS, namelyP1, P2, . . . , Pk so thatPi is a refinement ofPi−1. At
each stepi, an elementQ of partitionPi is chosen so that the cost of partitioning it is minimized, where the cost of
partitioningQ is given by

cost(Q) = min
X⊆2Q\{Q,φ}

[

F (X) + F (Q \X) + F (Q)
]

Observe thatF (X) + F (Q \X) + F (Q) is a symmetric submodular function on2Q and hence this minimization can
be done using Queyranne’s algorithm. Observe thatPi is a i-partition, and hence we obtain ak-partition afterk − 1
iterations (each of which requires an application of Queyranne’s algorithm).

Lemma 10. At iterationi, the value oftotalCost is
∑

Q∈Pi
F (Q)− F (S). Therefore,

∑

Q∈Pk

F (Q)− F (S) =

k−1
∑

i=1

cost(Qi)

Proof. This is clearly true fori = 1. Suppose now that result holds fori = m− 1. Since
[

∑

Q∈Pm

F (Q)− F (S)−
]

−
[

∑

Q∈Pm−1

F (Q)− F (S)−
]

= F (Am) + F (Bm)− F (Qm) = cost(Qm)

it follows that the result also holds fori = m. Therefore the resuld holds for alli.

Lemma 11. Suppose thatL is the set ofk − 1 lightest weight edges in the Gomory-Hu tree forf : 2S → R given by
f(X) = F (X) + F (S \X)− F (X). Then

k=1
∑

i=1

cost(Qi) ≤
∑

e∈L

w(e)

Proof. We will show thatcost(Qi) ≤ w(ei) whereei is theith lightest weight edge inL. At the first iteration, the
minimum weight edge measures the cost of partitioningS, which is exactly whatcost(Q1) is since the only parititon
in P1 is S. Therefore the assertion holds fori = 1. Suppose that the assertion holds fori < m. Let (ai, bi) be
the end-points of the edgesei for 1 ≤ i ≤ k − 1. At stagem, it must be the case that(ai, bi) are in the same
partition for some1 ≤ i ≤ m. Therefore, there is a partition{A, B} of S which sepatatesai and bi for which
F (A) + F (B) − F (S) = w(ei). Suppose thatai, bi ∈ Q ∈ Pi. Then becauseF is submodular, we must have
F (A)+F (B ∪ (A∩Q)) ≥ F (A∩Q)+F (S), and henceF (A)−F (S) ≥ F (A∩Q)−F (B∪ (A∩Q)). Therefore,

w(ei) = F (A) + F (B)− F (S) ≥ F (A ∩Q) + F (B)− F (B ∪ (A ∩Q))

Further, we haveF (B) + F ((A ∪B) ∩Q) ≥ F (B ∩Q) + F (B ∪ (A ∩Q)) and henceF (B)− F (B ∪ (A ∩Q)) ≥
F (B ∩Q)− F ((A ∪B) ∩Q). Therefore,

w(ei) ≥ F (A ∩Q) + F (B)− F (B ∪ (A ∩Q)) ≥ F (A ∩Q) + F (B ∩Q)− F ((A ∪B) ∩Q)
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Therefore, we can split someQ ∈ Pi at a cost of no more thanw(ei). Therefore,cost(Qi) ≤ w(ei), and so

k−1
∑

i=1

cost(Qi) ≤
∑

e∈L

w(e)

Corollary 12. Suppose that{B1, B2, . . . , Bk} is the set of partitions produced by the Algorithm 2. Then

k
∑

i=1

F (Bi)− F (S) ≤
∑

e∈L

w(e)

Corollary 13. Suppose that{B1, B2, . . . , Bk} is the set of partitions produced by the Algorithm 2. Then

k
∑

i=1

F (Bi) ≤ 2

k
∑

i=1

F (Ai)

Proof.

k
∑

i=1

F (Bi) ≤ F (S) +
∑

e∈L

w(e)

≤ F (S) +

k
∑

i=1

f(Ai)

≤ F (S) +

k
∑

i=1

F (Ai)

≤ 2

k
∑

i=1

F (Ai)

This result is interesting in that it produces a bound in terms of the Gomory-Hu tree, even though it does not
actually produce a Gomory-Hu tree.

The recursive-bisection algorithm uses Queyranne’s algorithm for finding a biparitition at each iteration. In [33],
Rizzi pointed out that Queyranne’s algorithm works for a larger class of functions than just submodular functions.
In the next section, we consider one such important function, and we show that in this case the recursive-bisection
algorithm leads to the optimal solution.

4 The Single-Linkage Criterion

Suppose thatS is a metric space with distance functiond : S × S → R. Intuitively, if x, y ∈ S are very similar, then
the distanced(x, y) between the two objects is small, whiled(x, y) is large if the objects are dissimilar. We can use
this metric to define a distanceD : 2S × 2S → R between subsets ofS as follows.

D(A, B) = min
a∈A,b∈B

d(a, b)

Lemma 14. The functionD : 2S × 2S → R satisfies the following properties.

1. D(A, B) = 0 if A ∩B 6= φ.

2. D(·, ·) is symmetric:D(A, B) = D(B, A) for all A, B ⊆ S.

3. D(A, B) ≤ D(A, C) + D(C, B).
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A

B

Figure 6: The Single-Linkage Criterion

Proof. If A∩B 6= φ, then there is some elementx ∈ A∩B. HenceD(A, B) ≤ d(x, x) = 0. Now,D(A, B) is always
non-negative becaused(x, y) is always non-negative, and henceD(A, B) = 0. The second assertion is immediate
from the definition ofD(·, ·), while the third assertion follows from the triangle inequality for the metricd(·, ·).

A partition{A, S \A} of S that maximizesD(A, S \ A) is a partition that is asseperatedas possible, and so is a
natural criterion for clustering. The single-linkage criterion is given by

J sl
k ({A1, A2, . . . , Ak}) = −min

i6=j
D(Ai, Aj) = − min

Ai 6=Aj

ai∈Ai,aj∈Aj

d(ai, aj)

Figure 6 illustrates this fork = 2. Observe that this criterion works find even ifd(x, y) is an element of some ordered
setR instead of a real number.

We now show that Queyranne’s algorithm can be used for findinga partition that maximizesD(A, S \ A) (or
minimizes−D(A, S \ A)). The function, as defined is not submodular. However, we canstill use Queyranne’s
algorithm due to a result by Rizzi [33] who showed that Queyranne’s algorithm works even when the objective function
f is not submodular, as long asf is monotoneandconsistent.

Definition 15. Suppose thatf is a function defined on pairs of disjoint subsets ofS. Thenf is monotone if

f(R, T ′) ≤ f(R, T ) for all R, T, T ′ ⊆ S with T ′ ⊆ T andR ∩ T = φ

andf is consistent if

f(A, W ∪B) ≥ f(B, A ∪W ) if A, B, W ⊆ S are disjoint and satisfyf(A, W ) ≥ f(B, W )

Therefore, our next goal is to show that the function−D(·, ·) is monotone and consistent. Once we show this, it
will follow from Rizzi’s result that we can find a 2-clustering {S1, S2} = {S1S \ S1} that minimizes−D(S1, S2),
and hence maximizesD(S1, S2).

Lemma 16. If R ⊆ T , thenD(U, T ) ≤ D(U, R) (and hence−D(U, R) ≤ −D(U, T )).

Proof. This would imply that−D is monotone. To see this, observe that

D(U, T ) = min
u∈U,t∈T

d(u, t) = min

(

min
u∈U,r∈R

d(u, r), min
u∈U,t∈T\R

d(u, t)

)

≤ min
u∈U,r∈R

d(s, r) = D(U, R)
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Lemma 17. Suppose thatA, B, W are disjoint subsets ofS and D(A, W ) ≤ D(B, W ). ThenD(A, W ∪ B) ≤
D(B, A ∪W ).

Proof. To see this first observe thatD(A, B ∪W ) = min(D(A, B), D(A, W )) because

D(A, W ∪B) = min
a∈A,x∈W∪B

D(a, x) = min

(

min
a∈A,w∈W

D(a, w), min
a∈A,b∈B

D(A, b)

)

It follows that

D(A, B ∪W ) = min (D(A, B), D(A, W ))

≤ min (D(A, B), D(B, W ))

= min (D(B, A), D(B, W ))

= D(B, A ∪W )

Therefore, if−D(A, W ) ≥ −D(B, W ), then−D(A, W ∪ B) ≥ −D(B, A ∪W ). Hence−D(·, ·) is consistent.
Therefore,−D(·, ·) is symmetric, monotone and consistent. Hence it can be minimized using Queyranne’s algorithm
[33], and so we have a procedure to compute optimal 2-clusterings with respect toJ sl

2 . We now extend this to compute
optimalk-clusterings.

4.1 Optimal k-clusterings

We start off by extending our objective function fork-clusterings in the obvious way. The functionD(R, T ) can be
thought of as defining theseparationor marginbetween the clustersR andT . The natural generalization to more than
two clusters is

J sl
k ({S1, S2, . . . , Sk}) = min

i6=j
D(Si, Sj) = min

Si 6=Sj

si∈Si,sj∈Sj

d(si, sj)

Note thatJ sl
2 ({R, T }) = D(R, T ) for a 2-clustering. The functionJ sl

k : Ck(S) → R takes a single cluster-
ing as its argument. However,D(·, ·) takes two disjoint subsets ofS as its arguments the union of which need
not beS in general. The margin is the distance between the closest elements of different clusters, and hence we
will be interested in findingk-clusters that maximize the margin. Therefore, we seek an element inOk(S) =
arg max{S1,S2,...,Sk}∈Ck(S) J sl

k ({S1, S2, . . . , Sk}). Let vk(S) be the margin of an element inOk(S). Therefore,
vk(S) is the best possible margin of anyk-clustering ofS. An obvious approach to generating optimalk-clusterings
given a method of generating optimal 2-clusterings is the following. Start off with an optimal 2-clustering{S1, S2}.
Then apply the procedure to find 2-clusterings ofS1 andS2, and stop when you have enough clusters. There are
two potential problems with this approach. First, it is not clear that an optimalk-clustering can be a refinement of an
optimal 2-clustering. That is, we need to be sure that there is an optimalk-clustering in whichS1 is the union of some
of the clusters, andS2 is the union of the remaining. Second, we need to figure out howmany of the clustersS1 is the
union of and how manyS2 is the union of. In this section, we will show that for anyk ≥ 3, there is always an optimal
k-clustering that is a refinement of any given optimal 2-clustering. A simple dynamic programming algorithm takes
care of the second potential problem.

We begin by establishing some relationships between the separation of clusterings of different sizes. To compare
the separation of clusterings with different number of clusters, we can try and merge two of the clusters from the
clustering with more clusters. Say thatS = {S1, S2, . . . , Sk} ∈ Ck(S) is anyk-clustering ofS, andS′ is a(k − 1)-
clustering ofS obtained by merging two of the clusters (sayS1 andS2). ThenS′ = {S1 ∪ S2, S3, . . . , Sk} ∈ Ck−1(S).

Lemma 18. Suppose thatS = {S1, S2, . . . , Sk} ∈ Ck(S) and S′ = {S1 ∪ S2, S3, . . . , Sk} ∈ Ck−1(S). Then
J sl

k (S) ≤ J sl
k−1(S

′). In other words, refining a partition can only reduce the margin.

Therefore, refining a clustering (i.e., splitting a cluster) can only reduce the separation. An immediate corollary is
the following.

Corollary 19. If Tl ∈ Cl(S) is a refinement ofTk ∈ Ck(S) (for k < l) thenJ sl
l (Tl) ≤ J sl

k (Tk). It follows that
vk(S) ≥ vl(S) if 1 ≤ k < l ≤ n.
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A T G A A C T T G A T G A A C T T GG

Figure 7: An example of a point mutation: The parent and childdiffer in a single position

Proof. It suffices to prove the result fork = l − 1. The first assertion follows immediately from Lemma 18. Let
S ∈ Ol(S) be an optimall-clustering. Merge any two clusters to getS′ ∈ Ck(S). By Lemma 18,vk(S) ≥ J sl

k (S′) ≥
J sl

l (S) = vl(S).

Next, we consider the question of constructing larger partitions (i.e., partitions with more clusters) from smaller
partitions. Given two clusteringsS = {S1, S2, . . . , Sk} ∈ Ck(S) andT = {T1, T2, . . . , Tl} ∈ Cl(S) of S, we can
create a new clusteringU = {U1, U2, . . . , Um} ∈ Cm(S) to be their common refinement. That is, the clusters ofU
consist of those elements that are in the same clusters of bothS andT . Formally,

U = {Si ∩ Tj : 1 ≤ i ≤ k, 1 ≤ j ≤ l}

Lemma 20. Let S = {S1, S2, . . . , Sk} ∈ Ck(S) and T = {T1, T2, . . . , Tl} ∈ Cl(S) be any two partitions. Let
U = {U1, U2, . . . , Um} ∈ Cm(S) be their common refinement. ThenJ sl

k (U) = min
(

J sl
k (S), J sl

k (T )
)

.

Proof. It is clear thatJ sl
m(U) ≤ min

(

J sl
k (S), J sl

l (T )
)

. To show equality, note that ifa, b are in different clusters ofU ,
thena, b must have been in different clusters of eitherS or T .

This result can be thought of as expressing a relationship betweenJ sl
k and the lattice of partitions ofS.

Lemma 21. Suppose thatS = {S1, S2} ∈ O2(S) is an optimal 2-clustering. Then there is always an optimal
k-clustering that is a refinement ofS.

Proof. Suppose that this is not the case. IfT = {T1, T2, . . . , Tk} ∈ Ok(S) is an optimalk-clustering, letr be the
number of clusters ofT that “do not respect” the partition{S1, S2}. That is,r is the number of clusters ofT that
intersect bothS1 andS2 :

r = |{1 ≤ i ≤ k : Ti ∩ S1 6= φ andTi ∩ S2 6= φ}|

PickT ∈ Ok(S) to have the smallestr. If r = 0, thenT is a refinement ofS and there is nothing to show. Otherwise,

r ≥ 1. Assume WLOG thatT (1)
1 = T1∩S1 6= φ andT

(2)
1 = T1∩S2 6= φ. ThenT ′ =

{

T
(1)
1 , T

(2)
1 , T2, T3, . . . , Tk

}

∈

Ck+1(S) is a refinement ofT and satisfiesJ sl
k (T ′) = J sl

k (T ). This follows from Lemma 3 along with the fact that

• D(Ti, Tj) ≥ J sl
k (T ) for any2 ≤ i < j ≤ k,

• D(T
(i)
1 , Tj) ≥ J sl

k (T ) for anyi ∈ {1, 2} and2 ≤ j ≤ k,

• D(T
(1)
1 , T

(2)
1 ) ≥ J sl

k ({S1, S2}) = v2(S) ≥ vk(S) = J sl
k (T )

Now, pick two clusters ofT ′ that are either both contained in the same cluster ofS or both “do not respect”S.
Clearly this can always be done. Merge these clusters together to get an elementT ′′ ∈ Ck(S). By Lemma 18 merging
clusters cannot decrease the margin. Therefore,J sl

k (T ′′) = J sl
k (T ′) = J sl

k (T ). However,T ′′ has fewer clusters that
do not respectS handT has, and hence we have a contradiction.

This lemma implies that Queyranne’s algorithm, along with asimple dynamic programming algorithm can be used
to find the bestk clustering with time complexityO(k |S|3). Observe that in fact this problem can be solved in time
O(|S|2) ([9]). Even though using Queyranne’s algorithm is not the fastest algorithm for this problem, the fact that
it optimizes this criterion implies that it can be used to optimize conic combinations of submodular criteria and the
single-linkage criterion.
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Figure 8: The Single Nucleotide Polymorphisms that occur inthe ACE gene in 22 Chromosomes (data taken from
[37]) The numbers above the column represent the position onthe chromosome. A filled indicates the presence of the
rare allele, while a blank square indicates the presence of the common allele.

5 An Application: Mining SNPs

Most of the variation in the human genome is due to point mutations, which substitutes a single nucleotide for another.
For example, the parent and child nucleotide sequences shown in Figure 7 differ in just one position, and so could be
the result of a point mutation. When such mutations occur, different individuals in the population could have different
nucleotides at a given site/position. This polymorphism atthe site/position of the mutation is called aSingleNucleotide
Polymorphism (SNP). SNPs may occur in both coding (in which case the SNP could be either non-synonymous or
synonymous) and non-coding regions (UTRs, introns, intergenic regions). Normally, a position in the genome in which
more than one nucleotide is observed in the population is considered a SNP only if it is undergoes stable inheritance,
and at least 1% of the population has the variation. It is estimated that there are about 5 million commonly occurring
SNPs which account for the bulk of human genomic diversity and occur on the average of 1 every 600 base-pairs.
For most SNPs, there are only two variants, which we term as the common allele, and the rare allele. Figure 8 shows
the the polymorphisms that occur in theAngiotensinConvertingEnzyme (ACE) gene in 22 chromosomes. The rows
of this matrix represent individual chromosomes, while thecolumns of the matrix represent a particular site on the
chromosome. A filled square indicates the presence of the rare allele.

While most of these SNPs are not associated with any (obvious) external phenotype, they have an impact on the
protein synthesized, and hence are associated with either diseases, or the effectiveness of medications. For example,
a mutation at location 14188 of the ACE gene determines the effectiveness of certain blood pressure medications.
Following such discoveries, it is hoped that mapping individual SNPs will help with the following goals:

1. Understanding genetic component of disease by providingdisease markers.

2. Understanding genetic component of drug responses allowing for personalized medicine.

Both these goals require that we map all the SNPs. However, since determining each SNP can cost between $0.10-
$1.00, cataloging all the 100,000 or so SNPs for each individual is too expensive. therefore, we need a cost-effective
mechanism of capturing as many of the SNPs as possible. As canbe seen from Figure 8, the presence of SNPs at
different sites can be highly correlated, and therefore, wemight be able to infer the entire genome with reasonably
high accuracy by observing only a few positions. For example, sets of SNPs that are in close proximity are likely to be
inherited in blocks, and hence the presence or absence of these SNPs are highly correlated. Alleles consisting of such
blocks of SNPs form a haplotype reflecting descent from a single ancient ancestral chromosome. Since there is very
limited diversity in these blocks, knowledge of one or a few of the SNPs in these blocks is sufficient to reconstruct the
remaining SNPs with high accuracy. This block effect is referred to aslinkage disequilibrium(LD) which is formally
defined as the non-random association of SNPs in a short blockof a chromosome. If a particular SNP causes (or
increases susceptibility to) a genetic disease, then any other SNP in high LD with the disease causing SNP will show
significant statistical association with the disease, and hence can be used as a genetic marker for the disease. Typically
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two SNPs are inherited as a block if recombination does not occur at some spot between the SNPs. Since the genome
has very long segments with very low recombination punctuated with short segments of very high recombination, it
is possible that there could be a very large block which is inherited as a unit. In such large blocks, it is quite possible
that additional mutations occur (especially when the population size is large) leading to changes in the haplotype
block differing from the ancestral chromosome. Nonetheless, it is very likely that even large haplotype blocks can be
reconstructed very accurately using just a few SNPs. The goal therefore is to select a minimal set ofhaplotype tagging
SNPsthat will allow accurate reconstruction of the remaining SNPs.

We can think of this as a inference problem. We have a correlated set of random variables,{Xv}v∈V . HereV is
the set of positions of the SNPs.Xv is a binary random variable which is 0 when the common allele occurs at position
v, and 1 when the rare allele occurs at positionv. Since the random variables are not independent, knowledgeof one
or more of the random variables allows to predict the unknownrandom variables with accuracy that exceeds random
guessing. Therefore, we want to find a minimal set of random variables, which if observed, allows us to infer the
remaining random variables with the desired accuracy.

5.1 Prior Work

Many approaches to this problem have been proposed. Most block based approaches assume that the size of the
block is fixed (and specified), and the chromosome/gene is partitioned into these blocks and a dynamic programming
algorithm selects the optimal set of SNPs within sliding blocks of the specified size [38, 4, 32]. There are three main
issues with this approach. First, the block size is not fixed and varies across the chromosome. Further, it is hard to
predict the block size. Finally, even if the block size is known, the optimal algorithms are typically exponential in
the size of the block and so could be computationally very expensive. The prior approaches to block-based haplotype
tagging SNPs assume that the blocks are contiguous blocks ofthe genome. However, it has been observed that there
can be significant LD even across very long stretches of the genome, and two SNPs separated by a large distance can
have high LD even if neither has high LD with any SNP in the region between these SNPs. We present an alternative
way of selecting haplotype blocks which are not (necessarily) composed of SNPs from a contiguous region of the
genome, but instead, we select SNPs to be in a block based on the Minimum Description Length criterion. This results
in a polynomial time algorithm for partitioning the SNPs into haplotype block.

Block-free approaches search for the optimal set of SNPs that will allow reconstruction regardless of the block
structure. In such case, the problem could be formulated either as finding the most informative set ofk SNPs, or as
finding the minimum sized set of SNPs that allow reconstruction to a prescribed degree of accuracy. We will assume
the former which can be thought of as a budgeted SNP selectionproblem. A naive approach to this problem is to
enumerate all subsets ofk SNPs and then pick the optimal set according to some measure of informativeness. This
leads to an algorithm which is exponential ink. However the problem is NP-complete [4] and so (in the worst case)
all algorithms that guarantee optimality will take exponential time. Another approach proposed in [27] attempts to
construct “eigenSNPs” by performing a principal components analysis of the SNP data. The eigneSNPs are then
analyzed to pick the best set of SNPs. This is not guaranteed to yield the optimal set of SNPs (which is to be expected
because the problem is NP-complete), but it also does not give an approximation guarantee. One problem with this
approach is that the process of converting eigenSNPs (whichhave real valued positive and negative coefficients) to
discrete sets of SNPs is somewhat ad-hoc. Another issue is the fact that in the presence of multiple highly-correlated
SNPs, it is possible that the SNP matrix is non-singular, andso the eigenvectors can be expressed as different linear
combinations of the columns, resulting in both numerical instability and possible selection of a excessively large set
of SNPS.

Other than the eigenSNP paper of [27], most of the other approaches [7, 37, 4] only consider pairwise correlation
of the SNPs. For example, [7] uses the pairwise statisticsD′ andr2 defined in [10] to characterize the pairwise LD
between pairs of polymorphic sites, and then use this criterion to select SNPs. [4] propose a related measure which
measures pairwise informativeness.

It is possible that a given SNP cannot be reconstructed to thedesired degree of accuracy using any other single
SNP, but can be reconstructed to this degree of accuracy using more than one SNP. The two algorithms we present
in this chapter are based on information theoretic criteriathat reflect the accuracy of reconstructing based on all the
chosen SNPs (simultaneously). The first is a greedy selection algorithm to maximize the informativeness of SNPs
(measured by entropy as suggested by [21, 3]) which can be shown to yield a 0.63 factor approximation algorithm.
The second is an MDL based criterion described previously, which attempts to partition the set of SNPs into subsets
of highly correlated SNPs and then selecting representative SNPs from each cluster.
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6 Information Theoretic Approaches

[21, 3] use Shannon Entropy to measure the amount of diversity of a collection of SNPs. While a variety of techniques
have been proposed to select a set of SNPs with the most entropy, we show that a simple greedy algorithm leads to a
0.63 factor approximation algorithm for the following problem:

Problem 2. Given a collection ofS of n SNPs, find a subsetT ⊂ S of sizek with the largest possible entropy.

This problem is NP-complete, but it can be shown that Algorithm 1 returns a 0.63 approximation algorithm for
this problem. In fact it can also be shown that it is not possible for a polynomial time algorithm to have a better
approximation guarantee unless P=NP.

T0 ← φ;
for i := 1 . . . k do

Pick si so thatH
(

Ti−1 ∪ {si}
)

is maximized;

Ti ← Ti−1 ∪ {si};
end
returnTk;

Algorithm 3 : A greedy algorithm to pick a set of SNPs with the most entropy

A different approach has been advocated in [4]. They suggestthat it is more important to pick a subset that
yields as much information about the remaining SNPs as possible. While they present an approach based on pair-wise
predictability, Mutual Information generalizes this approach to allow the use of all the SNPs to predict the remaining
SNPs. The mutual information between two setsT1 andT2 of SNPs is given by

I(T1; T2) = H(T1) + H(T2)−H(T1 ∪ T2)

This measures the reduction in entropy (or uncertainty) inT given information about the SNPs inS. Haplotype blocks
are generally considered to be blocks which have low diversity, and are more or less (statistically) independent of other
haplotype blocks. Therefore, partitioning the SNPs into multiple blocks to minimize the mutual information across
the blocks can be considered to be a good approximation of theoptimal haplotype blocks. This is also directly related
to the Minimum Description Length (MDL) criterion for partitioning. The entropyH(S) measures the asymptotic
description length using a universal code, and so the MDL criterion for partitioning the set of SNPsS into two parts
T1 andT2 = S \ T1 so thatH(T1) + H(T2) is minimized. In fact, this is equivalent to partitioning the SNPs into two
parts to minimize the mutual information between the two parts:

arg min
S=T1∪T2

I(T1; T2) = arg min
S=T1∪T2

[

H(T1) + H(T2) + H(T1 ∪ T2)
]

= arg min
S=T1∪T2

[

H(T1) + H(T2) + H(S)
]

= arg min
S=T1∪T2

[

H(T1) + H(T2)
]

This approach does not consider the distance between the SNPpositions, just their statistical relationship. This may
be a better approach to constructing sets with high LD than considering just locality because studies have shown that
there can be high LD even across large distances. It turns outthat there is an algorithm which when given a set of
SNPs, can find the optimal partition of SNPs to minimize the amount of mutual information across the two parts (in
other words, it partitions the SNPs into parts which are as statistically independent as possible). This algorithm can
be applied recursively in a simple dynamic programming framework to pick the optimal set of haplotype blocks. This
approach is closely related to the approaches of [37, 7], which cluster the SNPs on the basis of the similarities of the
pairwise LD measures, and then select one SNP per cluster.
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Figure 9: Leave-1-Out CV on the ACE Gene

7 Experimental Results

Figures 9, 10, and 11 compare various algorithms for reconstructing all the alleles from a small subset of alleles.
Besides the SNP selection algorithm presented in this chapter, we evaluate the Varimax, Greedy and Iterative Selection
algorithms of [28]. In [28], it is shown that these algorithms substantially outperform other algorithms, and so these
three are used as the baseline. While the MDL clustering algorithm presented in this chapter can be used to select the
SNPs that are to be observed, different algorithms can be used to predict the remaining SNPs. We use two techniques
for reconstruction. The first is to predict an unknown SNP based on the known SNP from the same cluster as the
unknown SNP, and this is denoted as ’MDL’ in the figures. The second is to use all the observed SNPs (from all the
custers) to generate a classifier for each unknown SNPs. Thisis denoted ’IMDL’ in the figures.

Figures 9, 10, and 11 compares the algorithms for reconstruction accuracy on the ACE gene, the IBD gene and the
ABCB gene respectively.

8 Conclusions

In this chapter, we showed that several natural clustering criterion are either submodular, or reducible to submodular
criteria. As a result, we can use Queyranne’s algorithm to find the optimal 2-clustering with respect to these criterion.
Fork-clustering (k > 2), we can use the Gomory-Hu tree produced by Queyranne’s algorithm to produce clusterings
guaranteed to be within2(1−1/k) of the optimal. Because the MDL criterion is submodular, we can use Queyranne’s
algorithm for MDL clustering. We applied MDL clustering to the problem of determining an optimal set of haplotype
tagging SNPs, and this results in substantially better results than the algorithms currently used for this purpose.
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Figure 10: Leave-1-Out CV on the IBD Gene
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Figure 11: 10-fold CV on the ABCB Gene
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