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Abstract

We show that Queyranne’s algorithm for finding a non-triviahimizer of a symmetric submodular function can
be used as a clustering algorithm. For submodular clustemiiterion, such as graph-cut or minimum description
length based criteria, we can find the optimal clustering2fatusters, and near optimal clusterings for more than
2 clusters. Due to results by Rizzi and Nagamochi and Ibathki algorithm can also be used for more general
functions, allowing it to be used for various other critesiech as the single-linkage criterion.



The goal of data clustering is to find a partition of the dataf{fire vectors, points in a metric space, random
variables, pixels in images, etc.) into sets of similar efhis is perhaps one of the most common and widely used
unsupervised data analysis technique. Clustering oftpaap under different names, such as mixture modeling, di-
mensionality reduction, voronoi tessellation, vectorriration, phylogenetic tree analysis, and image segrtienta
Broadly speaking, there are two reasons for clustering. dake first is for general data analysis and exploration.
In this case, the clustering is used to analyze, visualiad,rapresent high-dimensional, and high volumes of data
to reveal attributes of the data that are not immediatelyiais: The second reason is to produce an intermediate
representation that is used to generate other results.xaaonm@e, clustering is often used to determine probalilisti
mixture models (such as mixtures of Gaussians) which migdrn be used for classification.

Because there are so many different and varied applicdtioctustering, there are many different algorithms, and
many different criteria for clustering. The different deisng techniques can be categorized into two broad classes
The first consists of techniques that specify an objectivietion for clustering, and an algorithm for optimizing
(perhaps heuristically) this objective function. Thislirmes algorithms such as the many variants of K-Means (or
Lloyd’s algorithm) [30, 29, 2, 11], Spectral clustering (e was shown to approximately minimize a balanced cut
criterion) [31, 22, 35], and various graph based algoritfitds 1, 6, 12, 35, 18, 23]. The second class of techniques
generate the clustering as the result of an algorithmicga®avithout a clearly defined objective function. We inelud
in this class algorithms that are used primarily for viszigiion of the data. Examples include multidimensionalisgal
(perhaps coupled with matrix based algorithms) [8, 5] atid@ganizing maps [25, 19].

In this chapter, we restrict our attention to only the firgtss. We show that some commonly used clustering
objective functions are either submodular functions, dupgble to submodular functions. As a result, Queyranne’s
algorithm for minimizing symmetric submodular functiorsncbe used for finding the optimal clustering into two
clusters. Further we can find clusterings which are withimmastant factor of optimal when more than two clusters
are required. For some of the submodular criteria considerehis chapter, there are alternate algorithms which
can be used to determine the optimal clustering (for twotels}. In fact, as each of these alternate algorithms work
only on a specific objective function (instead of the entigess of submodular functions), they can be much faster
than Queyranne’s algorithm. For example, when the criteisoan undirected or directed graph cut criterion, we
can use either a flow based algorithm [15, 13], or other déglicgraph cut algorithms [17, 36] to find the optimal
solutions. Similarly when the objective function is thegdalinkage criterion, then we might use MST algorithm
[9, 20] for finding the optimal solution. These algorithme &aster than Queyranne’s algorithm as they are able to
exploit problem specific information. However none of thakgrithms can, for example, optimize a (positive linear)
combination of of the different criteria. However, since ttlass of submodular functions is closed under positive
linear combinations (and a number of other operations)y@ume’s algorithm can be used for this purpose.

In this chapter, we also present other submodular criteriavhich algorithms which guarantee optimality (even
for two clusters) were not previously known. For example, shew that Minimum Description Length criterion
[26] is submodular, and as a result, resolve an open probfdinding the optimal 2-clustering with respect to this
objective. Besides the optimality result for the MDL criter, the chief contribution of this chapter is to show that th
same algorithntan be used to optimize a number of widely used criteria, @mdé can be used for many application
specific criterion derived from combinations of simpler sudalular functions for which efficient algorithm are not
known.

1 Background and Notation

A clusteringof a finite setS is a partition{S;, S, ..., Si} of S. Therefore,S = U¥_,S;, andS; N S; = ¢ if and
only if ¢ # j (in particularS,; # ¢ forall 1 < i < k). We will call the individual elements of the partition thieisters
of the partition. If there aré clusters in the partition, then we say that the partitionis@ustering. LeC(.S) be the
set of allk-clusterings forl < k < |S|. Formally, the clustering problem can be described asvallo

Problem 1 (Clustering) Given a finite seb, and a clustering criterior, : C(S) — R, find

argmin Ji ({A1, Ag, .o Ar))
{A1,Az,...,A}eCr(S)

Itis shown in [20] thatCy (.S)], the number of-clusteringss for a base s&bf size|S| = n > k is approximately
k™ /k!. There are two consequences of this:
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Figure 1: The Graph-Cut criterion: The cost of the clustgrs the sum of the weights of the edges that are
between elements of different clusters. If all edges havightel, thenJ$({1,2,5},{3,4,6,7,8}) = 4 and
J§°({4,5,7},{1,2,3,6,8}) =T.

1. The objectively, : C(S) — R cannot be represented as a table of values for every elefént®). Therefore,
Jr must have some structure allowing for efficient representat

2. Exhaustive enumeration to select the optimal partitiomat (efficiently) possible. Hence algorithms that deter-
mine the optimal solution must exploit the structure/pf

The structure off, is often either derived from a probabilistic model, or fropedrwise similarity or distance measure.
We now list some criteria which are submodular, and hencdearptimized using Queyranne’s algorithm.

1.1 The Graph-Cut Criterion

Suppose thaf is the vertex set of a grapi = (S, E), and letw : E — RT assign weights to edges 6f. The
weightw({z,y}) is assumed to be a measure of similarity betwe@amdy. Hence ifz andy are very similar, then
w({z,y}) is large, whilew({x, y}) is small if the objects are very dissimilar. If the edge y} is not present in the
graph(so{z, y} € F), the itis assumed that({z,y}) = 0. The graph-cut criterion is given by

JEC({AlaAQa-"aAk}) = Z w({aivaj})
{aiajter
ai€A;,a; €A A F#A;

In other words, the cost of the clustering is the weights efaétigesrokenby the partition. Figure 1 illustrates this
criterion fork = 2. The emphasized edges are the edges that do not have botim ¢helsame partition, and hence
are the edges that abeokenby the clustering.

Let us denote byF(A) the set of edges that have (at least) one endl.ihet|E(A)| be the sum of the weights of
the edges i(A). The edges that are broken by the partitjioh S \ A} are the edges that are adjacent to hétind
S\ A, namelyE(A) N E(S '\ A). As was pointed out in Exampf?, the function

YeclA) = [E(A) = Y w({a,b})
{a,b}€E
acAorbeA
is an increasing submodular function. Therefore the famcti: 2° — R given by

_ Yec(4) +;gc(S\A) (9= > w({a,b})
a€AbES\A

f(4)

is a symmetric submodular function by Lemrd@aand because(S) is a constant. Observe that this is exactly the
number of edges broken by the cut. Therefore,

S ({4, 5\ 4}) = f(A)
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and therefore we can use Queyranne’s algorithm todigehin J5°. Note that there are alternate algorithms that can
also compute the minimum of this function such as those destin [15, 13, 17, 36]).

However, the problem of finding the minimum &§° for & > 2 is NP-complete in general (though it can be solved
in time polynomial in|S|, and exponential i, yielding a tractable algorithm for small valuesigf Observe that

k
sc i1 Vec(Ai
FE (A dncc ) = 2R s =S i)
aiGAi{Z;éjf‘x}ﬁii#A]‘

Observe that findingrgmin Jy, is equivalent to finding

k
argmin Z Yec(Ai)
{A1,A2,.., Ak} 5

While finding the solution to this problem is NP-complete e@ranne’s algorithm yields an approximation algorithm
for this problem, with approximation guarantd@ — 1/k) for k > 2.

1.2 The Feature-Similarity Criterion

Let I be a collection of features. Each object S is associated with some subset of these features. In thes was
would like to define similarity between objects (or sets gals) in terms of the number of shared features. In other
words, two objectsy, sy € .S are very similar ifs; ands, have a large set of features in common. We can construct a
bipartite graphG' = (S, F, E), so that there is an edde, f} € E if the objects has the featurg. LetT : § — 2F

map objects to the set of features that that the objects aoeiased with:

I'(s)={feF:{sfteE}
We can extend this function to subsetsSof
I(A) = |JT(s) ={feF:3{s,f} € Eforsomes € A}
seA
So for the bipartite graph shown in Figurel2{1,2,5}) = {4, B, D, E}, andI'({3,4,6}) = {B,C, D, E, F}. We
may associate weights with features, and so we define
(A = Y w(f)
fer(4)

Like v, defined in the previous sectiot; is also an increasing submodular function.
We measure the degree of similarity of two subsets dfy the (weighted) number of features common to both
sets. In other words, A, S\ A} is a partition, then the weight of the shared features isrgfbse

_ (4 +;fs(s \4) Y5s(S) = > w(f)

{feF:{a,f}eE,{b,f}€E,acAbeS\A}

f(4)

The functionf : 2° — R a symmetric submodular function by Lemraand becausex(S) is a constant. Therefore,

() £ a5\ 4)
2

can be minimimized using Queyranne’s algorithm. Eor 2, we take

J5 ({A, S\ A}) = f(A) Y5s(:S)
k
JE({AL, Ag, . AR)) = nys(Ai)

and findingargmin J; is NP-complete fok > 2. As in the previous section, Queyranne’s algorithm yieldgapprox-
imation algorithm for this problem, with approximation gaatee2(1 — 1/k) for k > 2.
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Figure 2: The Bipartite graph for the Feature-Similaritigezion. The cost of a partition is the weight of the common
features. In this casé&({1,2,5}) = {4, B, D, E}, andl'(3,4,6) = {B,C, D, E, F'}. Therefore, the set of common
features i B, D, E'}, and so the cost of the partitionig B) + w(D) + w(E).

1.3 The Minimum Description Length Criterion

Supppose thaf is a collection of random variables for which we have a (gatig) joint probability model. Since
we have the joint probabilities of all subsets of the randamables, the entropy of any subset%fs well defined.
The expected coding (or description) length of any colecii’ C S of random variables using an optimal coding
scheme is known to be the Shannon entropy of the set of randaables, denotefl (T"). The partition{.S;, Sz} of

S that minimizes the coding length is therefer@ mingg, g, yec,(s) 7 (S1) + H(S2). Now,

argmin  H(S1) + H(S2) = argmin H(S1) + H(S2) — H(S)
{S1,52}€C2(S) {S1,82}€Ca(S)
= argmin I(S7;952)
{517S2}€C2(S)

where(S1;52) is the mutual information betwees$ and .S, becauseS; U S; = S for all {S1,5:} € Ca(S),
Therefore, the problem of partitionirf§jinto two parts to minimize the description length is equavilto partitioning
S into two parts to minimize the mutual information betweer tharts. It was shown in Chapter 2 thidtis an
increasing submodular function (likg. and~s defined in the previous sections), and the functfon 2° — R
defined byf(T") = I(T; S\ T') is symmetric and submodular. Therefore,

Jo({AS\A}Y) = I(A; S\ A) = H(A) + H(S\ A) - H(S)

Clearly the minima of this function correspond to partisahat minimize the mutual information between the parts.
Therefore, the problem of partitioning in order to minimthe mutual information between the parts can be reduced
to a symmetric submodular minimization problem, which carsblved using Queyranne’s algorithm in timé|8|3)
assuming oracle queries to a mutual information oracle. [®Mhiplementing such a mutual information oracle is
not trivial, for many realistic applications (including ®mve consider in this paper), the cost of computing a mutual
information query is bounded above by the size of the datasdtso the entire algorithm is polynomial in the size of
the data set.

Fork > 2, we can similarly define

k
Te({A1, Ag, . Ax}) = H(A)

i=1

sinceH (A;) is the description length of the clustds. While this problem is also NP-complete, Queyranne’s algo-
rithm yields a2(1 — 1/k) factor approximation for it.
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1.4 The general setup

We will assume the following setup. We are given an incraasirbomodular functiod : 2° — R. We can use this
function to create a symmetric submodular functfon2® — R given by

f(X)=F(X)+ F(S\ X) - F(5)

As this is symmetric and submodaular, this function can bamired using Queyranne’s algorithm, and hence we can
find the optimal 2-parititon that minimizes the clusteringerion

k
Te({A1, Az, ALY =D F(A)

i=1

Observe that the functiofi(X) = F(X)+ F(S\X) could have just as easily been used as the symmetric subarodul
function to minimize as the addition of the const&t{tS) cannot alter the optimal solution. However, we prefer to use
f for two reasons. First, it is a direct generalization of tihapdp cut function. To see the second reason, observe that
forany X C S, and for any symmetric submodular functigt : 2° — R, we must have

21"(X) = f"(X) + [1(S\X) = [1(¢) + [7(S) = 2f"(9)

Therefore settingf”’(S) = 0 acts as a kind of normalization. It further ensures tfatis always non-negative.
Therefore, we will prefer to usg instead off’. We use this normalization property ¢f in the construction of the
Gomory-Hu tree in the next section.

2 Gomory-Hu Trees and Approximations

It was shown in Sectiof?? that Queyranne’s algorithm returns an (approximate) mireémof an (approximately)
symmetric submodular function. Therefore, we may use Qam’s algorithm to find the optimal 2-partition for a
symmetric submodular criterion. In this section, we coesttle problem of finding-clustering. Because the problem
of finding ak-partition is NP-complete for the graph-cut function [34hich is a symmetric and submodular function,
the more general problem of findingeapartition for symmetric submodular functions is NP-coetpl

In [16], Gomory and Hu showed how to construct a tree whictergally “encodes” all the solutions to all
optimization problems of the form

x 280y T
whenf(X) is the Graph-Cut criterion;, y are distinct elements of, andS(x, y) is the collection of sets that contain
x, but do not contairy:
S(x,y) ={XCS:zeSygS}

In other wordsS(z, y) is the collection of subsets ¢f that seperate from y. The Gomory-Hu tree is a spanning
tree on the vertex se&f, whose edges have weights associated with them. Since ttég athe removal of any edge
disconnects it, and hence produces a partitiof ofto two parts. The key property of the tree is this: For eveair

of verticess, t € S, there is a unique path in the tree betweseandt. Letey, es, ..., e, be the set of edges on this
path, and letv(e;), w(es),. .., w(e,) be the corresponding weights.df is the edge with the smallest weight, then
the removal ofe;, produces a partitiod S, S:} wheres € S, andt € S;, andS; is the (approximate) solution to

argminy (s, J(X).

Goemans and Ramakrishnan [14] observe that such a treec@dlsd a cut-equivalent tree) exists for every sym-
metric submodular function. Itis also observed in [14] th&omory-Hu tree for any symmetric submodular function
can be constructed K| — 1 calls to a procedure that finds solutions to problems of the tsgmin ¢ s, +) f(X).

While the Gomory-Hu tree has many applications, we shallnberésted in using it to produce approximately
optimal clusterings. Saran and Vazirani [34] showed thadéigting thek — 1 lightest weight edges of the Gomory-
Hu tree for the graph-cut function produced a partition Whi@s within a factor o2(1 — 1/k) of the optimal partition
with respect to the graph-cut criterion. We will show thastresult also holds for the Gomory-Hu tree for arbitrary
symmetric submodular functions. We will also use the Gortémytree to show that a recursive bisection algorithm
yields the same approximation ratio.

UWEETR-2006-0001 6



Figure 3: The graph cut function for any gragh= (V, E) is a symmetric and submodular function. Merging any
subset of the vertices, for examdld, E, F'}, to form a single node yields a new graph, and hence a new gt#ph
function.

2.1 Construction of a Gomory-Hu tree for symmetric submoduér functions

Queyranne’s algorithm works by repeatedly identifyinggemt-pairs, and then merging the pair of elements identified
A pendent-paift, u), defined in Definitior??, satisfies
{u} € argmin f(U)
UeS(u,t)

In other words, if(¢, ) is a pendent-pair, then eithér.} minimizesf (over all all non-trivial subsets of) or the
minimizer

argmin f(X)

XeS(x,y)
can be chosen so that it does not sepatiat®m t. For the second case, we can mengendt, treating them as a
single element, and the minimum for this merged functiohdg¢he minimum for the original function.

The idea of merging elements to generate a function on asnsa&t of elements is also central for the construction
of the Gomory-Hu tree. For this application, we will need terge arbitrary sets (i.e., more than a pair of elements)
into a single element. As for the case of merging pairs, tlegatjpn of merging sets results in a symmetric submodular
function defined on a smaller set.

Lemma 1. Suppose thaf : 2° — R is a symmetric submodular function. L&tC S. By merging the elements df
into a single element: 4 we get the sef4 = (S \ A) U {m4}, and the functiorf4 : S4 — R defined by
FA(X) = f(X) if X C(S\A)(andsomy ¢ X)
ATV —ma)UA) ifmaeX
is symmetric and submodular.

As an example, consider the graph shown in Figure 3. Merti@gét of vertice$ A, E, F'} results in a new graph
with fewer vertices. The graph cut function on this reducedex set is also symmetric and submodular.

The following lemma was presented in [16] for graph-cut fioits. The proof generalizes immediately to sym-
metric submodular functions.

Lemma 2. Suppose that, b € S are distinct elements, and

A € argmin f(X)
XeS(a,b)

If c,d € A are distinct elements, then we can find an element

C € argmin f(X)
XeS(e,d)

so that eithelS\ AC CorS\AC S\ C.
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Proof. Let us denote byl the setS \ A. By the symmetry off, we must have

A€ argmin f(X)
XeS(b,a)

In particularh € A, and therefore eithdrc An C orb € AN C. Let us consider both these cases.

1. Supposé € AN C. Because: € C we must have: ¢ AU C. Sinced ¢ C andd ¢ A, we must have
AU C € 8(c,d). Therefore, by the minimality of’ we have

F(C) < f(AU0)
Furtherh € AnCanda ¢ ANC. Therefored N C € S(a,b) and hence
f(A) = f(4) < f(AnC)
Adding these two inequalities, we get
F(A) + f(C) < fF(ANC) + f(AUC)
By the submodularity of, we have
fA) + F(C) = f(ANC) + f(AN B)
Therefore, equality must hold. In particular, it followsth
f(C) = f(CUA)
Hence the minimizer can be chosen so that it does not seplheagéements ofl.

2. Supposé € AN C. Because: ¢ C andc ¢ A, we must have ¢ C U A. ThereforeC' U A € S(d, c) and
hence B o
f(C) < f(AuC)
Becaus# € AN C, and because ¢ AN C we haved N C € S(a,b), and hence
f(A) < f(ANC)
Combining with the submodular inequality, we gé¢C) = f(C U A).
Therefore, the minimizer can be chosen to not separate ¢nsegits ofA in this case as well. O

Therefore, ifA € argminy (45 f(X), then for any distinct, d € A, we can treat the elementshas an atomic
unit ( by merging the elements dof). We formalize this in the following corollary.

Corollary 3. Suppose thal € argminx ¢, f(X), andc, d € A are distinct elements. If

C' € argmin f4(X)
XeS4(e,d)

thenC' € argmin x ¢ g(..q) f(X) Where

._[c | ifmggC
(C—mz)UA ifmZEC’

This observation is used in Algorithm 1 for constructing tBemory-Hu tree (also called the cut-tree). This
observation, and Algorithm 1 was first given by [16] for thee®f a graph cut function. However, the generalization
to symmetric submodular functions is immediate.

Figure 4 displays the first few steps in the running of Aldaritl for the graph cut function for the graph shown.

Now, P; is a partition ofS for everyl < i < |S], with P; consisting of a single partition with all the elements of
S, and P g| putting each element in a partition by itself. At each itematthe pair(P;, E;) forms a tree. Therefore,
after|S| iterations, the edges are between partitions that corfsistamtly one element each. By identifying the edges
between partitions that consist of one element each withdge between the (unique) element of the partitions, we
get a tree with vertex sef. This is the Gomory-Hu tree f(iS, f), and we denote it byS, E'). We now show some
properties of this tree.
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{E} {F}

{B,C,D} {4}
{E} {F}
{C, D} {A}

Figure 4: The first four steps in the running of Algorithm 1 fbe graph cut function on the graph shown. The graph
on the left represents the graph cut functfgrwhile the treg P;, E;) is shown on the right. The nodesndb selected
on line 5 of Algorithm 1 are shown with a thick border, and thie(c, B) is shown in different colors.
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Data: A setS and a submodular functigh
Result A Gomory-Hu treg(S, E) for f

P — {S}; By — ¢;
fori—1...|S]—1do

Pick some set (partitiord) € P; with |Q] > 2;
Pick distincta, b € Q;

Si—QU{mr :R€ P, R#Q};

Let f; : 2% — R be the merged function af};
Find A € argmin x¢cs(4.p) fi(A);

Al —QnNA B «—Q\ A,

Let Py — (Pl \ Q) U {Al, B/};

El, —{{R,S} € E; : {R,S} € E;,R, S # Q};
E?i1 — {{R, A"} - {R,Q} € E;,mpr € A},
B, — {{R,B'} : {R,Q} € E;,mp & A};
Eip1 — Ej§, UES, UER, U {4, B'}};

end

return (S, Es));

Algorithm 1: GomoryHuTree

Lemma 4. Suppose that the elementd € @ are selected at some iteratidn< i < |S| — 1. Let

A”:A’UUR and B”"=B'U U R

mRreA mRESi\A

wheremp, is the node inS; resulting from merging the partitio® € P,. Then{A”, B”} is a patrtition ofS, and this
partition is the optimal partition that separatesromb (for f). In other words

A" € argmin f(X)
XCS(a,b)

Proof. This follows immediately from Corollary 3. O

We may associate weights : £ — R with the edges of the Gomory-Hu tré8, E). The removal of any edge
e € Eresults in exactly two components. L{X, S \ X } be the corresponding partition 8f and letw(e) = f(X) =

fIS\X).

Proposition 5. Suppose that, b € S are any two distinct nodes, and the edgeses, . . ., e, are the edges on the
(unique) path betweemandb in the tree returned by Algorithm 1. ¢f is the minimum weight edge (for< i < k),
then the partition{ A, B} induced by removing the edgés the minimum weight partition separatiagromb (for f).
In other words,
A € argmin f(X)
XeS(a,b)

2.2 Using the Gomory-Hu tree for finding approximate k-partitions

Deleting anyk — 1 edges of the Gomory-Hu tree (or any other tree) resulisiomponents, and hence:gpartition

of S. The goal of this section is to show that if the- 1 edges chosen are the— 1 lightest weight edges, then the

resultingk-partition is within a factor 2 of the optimal. Let us denotebthe set of lightest weight — 1 edges in the

Gomory-Hu tree. The quantity’, . . w(e) will be quite important, as we will prove bounds in terms déthuantity.
We start with a bound on the the cost of separating any commiden the rest of the graph.

Lemma 6. Suppose thaf' = (S, F) is a Gomory-Hu tree folS, F') with corresponding edge weight function
w : E — R. Suppose that a subsét C F of edges are deleted, and thdtis a (connected) component in the

UWEETR-2006-0001 10



Figure 5: The edges i6’, going betweem andS \ B are shown dashed, while the edgedn \ G’ going between
AandB \ Ais shown as a solid line.

resulting graph. LetG 4 be the subset @ that is adjacent to some nodeih Then

JA < Y wle)

eeGa

Proof. We prove this result by induction did7 4|. If |G4| = 1, then the result follows from the way weights are

assigned to edges (and in this case, equality holds). Sagpasthe result holds for diz 4| < k. Consider the case

when|G4| = k. LetG' C G with |G| = k — 1 whereG/, is the subset of’ that is adjacent to some nodeh

Then the removal o', results in some component that strictly contaihsLet B be this component. Note thatdf

is the (unique) edge i 4 \ G'4, then the removal of separate®3 \ A from (S \ B) U A. This is shown in Figure 5.
By the submodular inequality, we have

f(B)+ F((S\ B)UA) = f(A) + f(9)
Sincef(S) = 0 (see discussion in the previous section), we have
w(Ga) = w(e) +w(Gly)

= f(B)+ f((S\ B)UA)
> f(A)

Therefore, the result holds whé@ 4| = k and hence, by induction, the result holds for all valuegf]|. O

Corollary 7. Suppose thafBi, Bs, ..., B} is the partition obtained by deleting the edgesinwhereG C E'is a

set ofk — 1 edgesinE. Then
k

Zf(Bi) SQ'ZU’(G)

=1 ecG
Proof. Observe that each edgedhis adjacent to exactly two sets {iB;, Bs, ..., B }. Therefore,
k
STrBy <Y ST we) =2 w(e)
i=1 i=1 e€Gp, eeG
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Lemma 8. Suppose thafA,, Ao, ..., A} is anyk-partition of S. Then

k—1
S HA) = Y w(e)
=1

ecl

whereL is a set of thek — 1 lightest weight edges ifr. In particular, since the numbering of the elements of the

partition is arbitrary, we have
k

> 1) = () L ut

i=1 eel

Proof. Construct a graph with vertex sBb = {A;, As, ..., A }. The edges of this graph are
Ep = {{Al,AJ} : {ai,aj} € E with a; € Ai,aj S Aj}

This is a connected graph (because it results from contattimsetA; for 1 < i < k in the Gomory-Hu tree which
is connected). Therefore, we can discard some subset ofifeséo make this graph a tree. &%, Gp) be this
tree. For each edgee Gp, there is some edge in the Gomory-Hu tree so that the end poiatsinda; of ¢’ are in
different partition4, and A,. In particular, Since botfiA;, S\ A;} and{A4,, S\ A;} separate; from a;, we must
havef(4;) > w(e’) andf(A;) > w(e'). Therefore, for each partitiod;, we havef(A4;) > w(e) for each edge that

is adjacent ta4;. Therefore,
k—1
S FA) = Y wle) =D wle)
=1

ecGp ecl

becauseC was chosen to be the setof- 1 lightest weight edges of the Gomory-Hu tree. Now, obseraére can
always number the sets so thdtd,) = max {f(A41), f(A42),..., [(Ar)}. Hencef(Ay) > 15 Zf;ll f(4;), and

therefore,
k k—1

St = (7o) s = (1) 2wz () St

i=1 =1 ecGp ecl
O

In [34], Saran and Vazirani showed that deletingthe 1 lightest weight edges results in a partition that is within
twice the optimal. We can combine the previous proposittongbtain a similar result for symmetric submodular
functions.

Proposition 9. Let {B;, Bs, ..., Br} be the partition obtained by deleting the lightest weight 1 edges. Let
{A1, Ao, ..., Ax} be any other partition. Then

Proof.

O

Since this holds for ang-partition{ A, Az, ..., A}, it holds in particular for the optimal-partition. Therefore,
deleting thek — 1 lightest weight edges yields a factor 2 approximation atgor. However, we are more interested in
approximating the surﬁ:f:l F(B;) instead of the surTZf:1 f(B;). The recursive bisection algorithm we describe
in the next section does just this.
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P1 — {S},
totalCost « 0;
fort«—1...k—1do

cost(Q) «— Xgrg\irg@ﬁ} [F(X)+ F(Q\ X)— F(Q)] forall @ € P; with |Q| > 1;

Pick @; to minimizecost(Q;); totalCost « totalCost + cost(Q;);
{A;, B;} < optimal partition ofQ; to minimize F'(A;) + F(B;) — F(Q;);
Pii1 — P\ Qi U{A;, Bi};

end

Algorithm 2 : A recursive bisection algorithm

3 Recursive Bisection

In this section, we consider a different algorithm for finglirpartitions. The algorithm The algorithm is quite simple.
There arek iterations, and produck partitions of S, namelyP;, P, ..., P, so thatP,; is a refinement of?,_;. At
each step, an element) of partition P; is chosen so that the cost of partitioning it is minimized gwehthe cost of
partitioning@ is given by

cost(@) = _min[F(X)+ FQ\X) + F(Q)

Observe thaf’(X) + F(Q \ X) + F(Q) is a symmetric submodular function @R and hence this minimization can
be done using Queyranne’s algorithm. Observe fas ai-partition, and hence we obtainkapartition afterk — 1
iterations (each of which requires an application of Quesess algorithm).

Lemma 10. At iterationi, the value ototalCost is 3, p, F'(Q) — F'(S). Therefore,

k—1
S F(@Q) - F(S) = Y cost(Q)
=1

QEPy
Proof. This is clearly true for = 1. Suppose now that result holds fio= m — 1. Since
[ Y F@-FS)-| - X F@Q=F(S)-] = F(An) + F(Bn) = F(Qm) = cost(Qm)
erm erm—l
it follows that the result also holds fér= m. Therefore the resuld holds for all O

Lemma 11. Suppose thaf is the set ok — 1 lightest weight edges in the Gomory-Hu tree for 2° — R given by
fX)=FX)+ F(S\X)- F(X). Then

k=1
Z cost(Q) < Y w(e)

ecl

Proof. We will show thatcost(Q;) < w(e;) wheree; is theith lightest weight edge i. At the first iteration, the
minimum weight edge measures the cost of partitiorfingvhich is exactly whatost(Q1) is since the only parititon
in Py is S. Therefore the assertion holds for= 1. Suppose that the assertion holds fox. m. Let (a;,b;) be
the end-points of the edges for 1 < i < k — 1. At stagem, it must be the case thét;, b;) are in the same
partition for somel < i < m. Therefore, there is a partitiop4, B} of S which sepatates; andb; for which
F(A)+ F(B) — F(S) = w(e;). Suppose that;,b; € Q € P;. Then becausé is submodular, we must have
F(A)+ F(BU(ANQ)) > F(ANQ)+ F(S),and hencd'(A) — F(S) > F(ANQ)— F(BU(ANQ)). Therefore,

w(e;)) = F(A)+ F(B) - F(S)>F(ANnQ)+ F(B)-F(BU(ANQ))

Further, we havé’(B) + F((AUB)NQ) > F(BNQ)+ F(BU(ANQ))and hencd'(B) — F(BU(ANQ)) >
F(BNQ)—- F((AUB)NQ). Therefore,

w(ei) = F(ANQ)+ F(B) - F(BU(ANQ)) = F(ANQ)+ F(BNQ) - F(AUB)NQ)
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Therefore, we can split sont@ € P; at a cost of no more thamn(e;). Thereforecost(Q;) < w(e;), and so

k—1
Z cost(Q;) < Z w(e)
i=1

ecl

Corollary 12. Suppose tha§B,, Bs, ..., By} is the set of partitions produced by the Algorithm 2. Then

k

Y F(B)—F(S) <Y wle)

i=1 ecl

Corollary 13. Suppose tha§B,, Bs, ..., By} is the set of partitions produced by the Algorithm 2. Then

Proof.

O

This result is interesting in that it produces a bound in eeohthe Gomory-Hu tree, even though it does not
actually produce a Gomory-Hu tree.

The recursive-bisection algorithm uses Queyranne’s dlguorfor finding a biparitition at each iteration. In [33],
Rizzi pointed out that Queyranne’s algorithm works for géarclass of functions than just submodular functions.
In the next section, we consider one such important functo we show that in this case the recursive-bisection
algorithm leads to the optimal solution.

4 The Single-Linkage Criterion

Suppose that' is a metric space with distance functién S x S — R. Intuitively, if z,y € S are very similar, then
the distancel(z, y) between the two objects is small, whiléz, y) is large if the objects are dissimilar. We can use
this metric to define a distand® : 2° x 2° — R between subsets &f as follows.

D(A,B) = ae{{xlil}leB d(a,b)

Lemma 14. The functionD : 2° x 29 — R satisfies the following properties.
1. D(A,B)=0if AN B # ¢.
2. D(-,-)is symmetric:D(A, B) = D(B, A) forall A,B C S.
3. D(A,B) < D(A,C) + D(C, B).
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Figure 6: The Single-Linkage Criterion

Proof. If ANB # ¢, thenthere is some element ANB. HenceD (A4, B) < d(z,z) = 0. Now, D(A, B) is always
non-negative becaus&zx, y) is always non-negative, and henbé A, B) = 0. The second assertion is immediate
from the definition ofD(-, -), while the third assertion follows from the triangle inetityefor the metricd(-,-). O

A partition{A, S\ A} of S that maximized (A, S \ A) is a partition that is aseperateds possible, and so is a
natural criterion for clustering. The single-linkage erion is given by

J3 ({A1,A2,...,Ar}) = —minD(4;,4;) = — min  d(a;,a,)
i#] Aj#A
aiGAi,ajeAj

Figure 6 illustrates this fok = 2. Observe that this criterion works find everi(fz, y) is an element of some ordered
setR instead of a real number.

We now show that Queyranne’s algorithm can be used for findipartition that maximize® (A4, S \ A) (or
minimizes—D(A, S \ A)). The function, as defined is not submodular. However, westéinuse Queyranne’s
algorithm due to a result by Rizzi [33] who showed that Queyes algorithm works even when the objective function
f is not submodular, as long gss monotoneandconsistent

Definition 15. Suppose thaf is a function defined on pairs of disjoint subsetsofThenf is monotone if
f(R,T) < f(R,T)forall R, T, 7" C SwithT' C TandRNT = ¢
and f is consistent if
f(AAWUB) > f(B,AUW)if A, B,W C S are disjoint and satisfyf (A, W) > f(B, W)

Therefore, our next goal is to show that the functieP(-, -) is monotone and consistent. Once we show this, it
will follow from Rizzi’s result that we can find a 2-clusteg{ S, S2} = {515\ S1} that minimizes—D(S1, S2),
and hence maximizeR(Sy, Sa).

Lemma 16. If R C T, thenD(U,T) < D(U, R) (and hence-D(U, R) < —D(U, T)).

Proof. This would imply that— D is monotone. To see this, observe that

DU, T)= min d(u,t) —Inin< min d(u,r), min d(u,t))
ueU,teT uelU,reR u€eU,teT\R

< min d(s,r) = D(U,R)

uelU,reR
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Lemma 17. Suppose thatl, B, W are disjoint subsets of and D(A, W) < D(B,W). ThenD(A,W U B) <
D(B,AUW).

Proof. To see this first observe that(A, B U W) = min(D(A, B), D(A,W)) because

DA WUB)=  min  D(a,z) = min ( min  D(a,w), min D(A, b))
acA,xeWUB acAweW acAbeB

It follows that

D(A,BUW) =min (D(A, B), D(A,W
< min(D(A4, B), D(B,W
=min (D(B,A),D(B,W
=D(B,AUW)

O

Therefore, if—-D(A, W) > —D(B,W), then—D(A,W U B) > —D(B, AU W). Hence—D(-, -) is consistent.
Therefore—D(+, -) is symmetric, monotone and consistent. Hence it can be nzeagrusing Queyranne’s algorithm
[33], and so we have a procedure to compute optimal 2-cingiewith respect tds'. We now extend this to compute
optimal k-clusterings.

4.1 Optimal k-clusterings

We start off by extending our objective function ferclusterings in the obvious way. The functid R, T') can be
thought of as defining theeparationor marginbetween the clustei® andT'. The natural generalization to more than
two clusters is
J({S1,S2,...,S:}) =min D(S;,S;) = min  d(s;, ;)
i#£] S;#S;
5;€854,5; €8}
Note thatJ§'({R,T}) = D(R,T) for a 2-clustering. The functioo;' : Cx(S) — R takes a single cluster-
ing as its argument. Howevel)(-,-) takes two disjoint subsets & as its arguments the union of which need
not be S in general. The margin is the distance between the closestegits of different clusters, and hence we
will be interested in finding:-clusters that maximize the margin. Therefore, we seek amett inO,(S) =
argmax g, s, s, 1ecy(S) JH({S1, Sy ..., Sk}).  Letwvg(S) be the margin of an element it (S). Therefore,
vk (9) is the best possible margin of akyclustering ofS. An obvious approach to generating optimkatlusterings
given a method of generating optimal 2-clusterings is thieviang. Start off with an optimal 2-clusteringS;, S>}.
Then apply the procedure to find 2-clusteringsSefand Sz, and stop when you have enough clusters. There are
two potential problems with this approach. First, it is nietac that an optimat-clustering can be a refinement of an
optimal 2-clustering. That is, we need to be sure that theam ioptimak-clustering in whichS; is the union of some
of the clusters, and; is the union of the remaining. Second, we need to figure outthawy of the clusters) is the
union of and how many; is the union of. In this section, we will show that for akhy> 3, there is always an optimal
k-clustering that is a refinement of any given optimal 2-@tisig. A simple dynamic programming algorithm takes
care of the second potential problem.

We begin by establishing some relationships between theratpn of clusterings of different sizes. To compare
the separation of clusterings with different number of ®us we can try and merge two of the clusters from the
clustering with more clusters. Say theit= {51, 52, ..., Sk} € Ci(S) is anyk-clustering ofS, andS’ isa(k — 1)-
clustering ofS obtained by merging two of the clusters (sayandSs;). ThenS’ = {S1 U S2,Ss, ..., Sk} € Cr—1(5).

Lemma 18. Suppose thaf = {S51,953,...,5k} € Ci(S) andS’ = {S1USs,S53,...,5k} € Cr—1(S). Then
J(S) < J3' (8. In other words, refining a partition can only reduce the niarg

Therefore, refining a clustering (i.e., splitting a clustan only reduce the separation. An immediate corollary is
the following.

Corollary 19. If 7; € C;(S) is a refinement off;, € Ci(S) (for k& < 1) then J3'(7;) < J{'(7;). It follows that
ve(S) > v(S)ifl <k <l<n.
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Parent Child

Figure 7: An example of a point mutation: The parent and dfifiér in a single position

Proof. It suffices to prove the result fdr = | — 1. The first assertion follows immediately from Lemma 18. Let
S € 0y(S) be an optimal-clustering. Merge any two clusters to g&te C;(S). By Lemma 18y (S) > JI'(S') >
JHS) = v (9). O
Next, we consider the question of constructing larger pant (i.e., partitions with more clusters) from smaller
partitions. Given two clusteringS = {51, 5s,...,5;} € Cx(S) and7 = {T1,Ts,...,T;} € C;(S) of S, we can

create a new clusteriid = {U1,Us, ..., Uy} € Cn(S) to be their common refinement. That is, the cluster& of
consist of those elements that are in the same clustersiofand7 . Formally,

Lemma 20. LetS = {51,52,...,5:} € Cx(S)andT = {T1,T5,...,T;} € C;(S) be any two partitions. Let
U={Uy,Us,...,Un} € Cp(S) be their common refinement. Théf(t/) = min (J5(S), Ji(T)).

Proof. Itis clear that/s, (/) < min (J;'(S), J§'(T)). To show equality, note that f, b are in different clusters af,
thena, b must have been in different clusters of eitlseor 7. O

This result can be thought of as expressing a relationshipdes.J§' and the lattice of partitions of.

Lemma 21. Suppose tha = {S1,52} € O2(S) is an optimal 2-clustering. Then there is always an optimal
k-clustering that is a refinement 6f

Proof. Suppose that this is not the case7lf= {T},Ts,...,Tx} € Ok(S) is an optimalk-clustering, let be the
number of clusters of that “do not respect” the partitiof\S;, So}. That is,r is the number of clusters & that
intersect botht; andSs :

r={1<i<k:T;NS #¢andl;N S, # ¢}

Pick7T € O(S) to have the smallest If r = 0, thenT is a refinement of and there is nothing to show. Otherwise,
r > 1. Assume WLOG thal'Y) = Ty NSy # ¢ andT® = T1NS, # ¢. ThenT’ = {Tf”,Tf?),Tg, Ty, ... ,Tk} c
Cr+1(9) is a refinement of” and satisfied;'(7”) = J;' (7). This follows from Lemma 3 along with the fact that

e D(T;,Tj) > JN(T) forany2 <i < j <k,
o D(T,T;) > J¥(T) foranyi € {1,2} and2 < j < k,
o DTV, 1) > JH({S1, 52}) = va(S) > wi(S) = J3(T)

Now, pick two clusters off’ that are either both contained in the same cluste$ of both “do not respectS.
Clearly this can always be done. Merge these clusters tegttlyet an eleme®” € C,(S). By Lemma 18 merging
clusters cannot decrease the margin. Therefff¢7"") = J3(T') = J3(T). However,7” has fewer clusters that
do not respecs handT" has, and hence we have a contradiction. O

This lemma implies that Queyranne’s algorithm, along wilinaple dynamic programming algorithm can be used
to find the best clustering with time complexity)(k |S]*). Observe that in fact this problem can be solved in time
O(|S)?) ([9]). Even though using Queyranne’s algorithm is not thetdat algorithm for this problem, the fact that
it optimizes this criterion implies that it can be used toimie conic combinations of submodular criteria and the
single-linkage criterion.
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Figure 8: The Single Nucleotide Polymorphisms that occuha ACE gene in 22 Chromosomes (data taken from
[37]) The numbers above the column represent the positidch@nohromosome. A filled indicates the presence of the
rare allele, while a blank square indicates the presendeeafdmmon allele.

5 An Application: Mining SNPs

Most of the variation in the human genome is due to point nutat which substitutes a single nucleotide for another.
For example, the parent and child nucleotide sequencessimaigure 7 differ in just one position, and so could be
the result of a point mutation. When such mutations occtferint individuals in the population could have different
nucleotides at a given site/position. This polymorphisthaisite/position of the mutation is calle@agle Nucleotide
Polymorphism (SNP). SNPs may occur in both coding (in whickectne SNP could be either non-synonymous or
synonymous) and non-coding regions (UTRs, introns, ieigregions). Normally, a position in the genome in which
more than one nucleotide is observed in the population isidered a SNP only if it is undergoes stable inheritance,
and at least 1% of the population has the variation. It isrestd that there are about 5 million commonly occurring
SNPs which account for the bulk of human genomic diversity aocur on the average of 1 every 600 base-pairs.
For most SNPs, there are only two variants, which we termeasdimmon allele, and the rare allele. Figure 8 shows
the the polymorphisms that occur in tAegiotensinConvertingenzyme (ACE) gene in 22 chromosomes. The rows
of this matrix represent individual chromosomes, while ¢b&umns of the matrix represent a particular site on the
chromosome. A filled square indicates the presence of tkeatkale.

While most of these SNPs are not associated with any (oby@dsrnal phenotype, they have an impact on the
protein synthesized, and hence are associated with eiibeaiss, or the effectiveness of medications. For example,
a mutation at location 14188 of the ACE gene determines tieetéfeness of certain blood pressure medications.
Following such discoveries, it is hoped that mapping irdlinl SNPs will help with the following goals:

1. Understanding genetic component of disease by proviisepse markers.
2. Understanding genetic component of drug responsesiatidar personalized medicine.

Both these goals require that we map all the SNPs. However sletermining each SNP can cost between $0.10-
$1.00, cataloging all the 100,000 or so SNPs for each indalié too expensive. therefore, we need a cost-effective
mechanism of capturing as many of the SNPs as possible. Abearen from Figure 8, the presence of SNPs at
different sites can be highly correlated, and thereforemight be able to infer the entire genome with reasonably
high accuracy by observing only a few positions. For exangats of SNPs that are in close proximity are likely to be
inherited in blocks, and hence the presence or absencesa 8¢Ps are highly correlated. Alleles consisting of such
blocks of SNPs form a haplotype reflecting descent from alsiagcient ancestral chromosome. Since there is very
limited diversity in these blocks, knowledge of one or a fdthe SNPs in these blocks is sufficient to reconstruct the
remaining SNPs with high accuracy. This block effect is mefe to adinkage disequilibrium(LD) which is formally
defined as the non-random association of SNPs in a short lofbakchromosome. If a particular SNP causes (or
increases susceptibility to) a genetic disease, then dney &\P in high LD with the disease causing SNP will show
significant statistical association with the disease, arth can be used as a genetic marker for the disease. Typicall
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two SNPs are inherited as a block if recombination does natoat some spot between the SNPs. Since the genome
has very long segments with very low recombination puneatith short segments of very high recombination, it
is possible that there could be a very large block which igiiited as a unit. In such large blocks, it is quite possible
that additional mutations occur (especially when the paijiah size is large) leading to changes in the haplotype
block differing from the ancestral chromosome. Nonetlgliss very likely that even large haplotype blocks can be
reconstructed very accurately using just a few SNPs. Thetlgeefore is to select a minimal setlwdiplotype tagging
SNPshat will allow accurate reconstruction of the remainingR3iN

We can think of this as a inference problem. We have a coe@lset of random variable§X. }, .. HereV is
the set of positions of the SNPX,, is a binary random variable which is 0 when the common alletaics at position
v, and 1 when the rare allele occurs at positiorsince the random variables are not independent, knowlefigee
or more of the random variables allows to predict the unknmamiom variables with accuracy that exceeds random
guessing. Therefore, we want to find a minimal set of randorabkes, which if observed, allows us to infer the
remaining random variables with the desired accuracy.

5.1 Prior Work

Many approaches to this problem have been proposed. Mosk blased approaches assume that the size of the
block is fixed (and specified), and the chromosome/gene titipaed into these blocks and a dynamic programming
algorithm selects the optimal set of SNPs within slidingdof the specified size [38, 4, 32]. There are three main
issues with this approach. First, the block size is not fixed waries across the chromosome. Further, it is hard to
predict the block size. Finally, even if the block size is Wm the optimal algorithms are typically exponential in
the size of the block and so could be computationally veryeasjve. The prior approaches to block-based haplotype
tagging SNPs assume that the blocks are contiguous blodke gfenome. However, it has been observed that there
can be significant LD even across very long stretches of theme, and two SNPs separated by a large distance can
have high LD even if neither has high LD with any SNP in the oedietween these SNPs. We present an alternative
way of selecting haplotype blocks which are not (neceggactdmposed of SNPs from a contiguous region of the
genome, but instead, we select SNPs to be in a block baseé dinimum Description Length criterion. This results

in a polynomial time algorithm for partitioning the SNPsdritaplotype block.

Block-free approaches search for the optimal set of SNRswvillaallow reconstruction regardless of the block
structure. In such case, the problem could be formulatéeeds finding the most informative set/ofSNPs, or as
finding the minimum sized set of SNPs that allow reconstamnctd a prescribed degree of accuracy. We will assume
the former which can be thought of as a budgeted SNP selegtaiem. A naive approach to this problem is to
enumerate all subsets 6fSNPs and then pick the optimal set according to some measurBonativeness. This
leads to an algorithm which is exponentialiin However the problem is NP-complete [4] and so (in the woaseg
all algorithms that guarantee optimality will take expoti@itime. Another approach proposed in [27] attempts to
construct “eigenSNPs” by performing a principal composeanalysis of the SNP data. The eigneSNPs are then
analyzed to pick the best set of SNPs. This is not guarantegelt the optimal set of SNPs (which is to be expected
because the problem is NP-complete), but it also does netagivapproximation guarantee. One problem with this
approach is that the process of converting eigenSNPs (wWiaeh real valued positive and negative coefficients) to
discrete sets of SNPs is somewhat ad-hoc. Another issue fa¢hthat in the presence of multiple highly-correlated
SNPs, it is possible that the SNP matrix is non-singular,smthe eigenvectors can be expressed as different linear
combinations of the columns, resulting in both numericatability and possible selection of a excessively large set
of SNPS.

Other than the eigenSNP paper of [27], most of the other amwes [7, 37, 4] only consider pairwise correlation
of the SNPs. For example, [7] uses the pairwise statigiicandr? defined in [10] to characterize the pairwise LD
between pairs of polymorphic sites, and then use this @itdo select SNPs. [4] propose a related measure which
measures pairwise informativeness.

It is possible that a given SNP cannot be reconstructed tolé¢se&ed degree of accuracy using any other single
SNP, but can be reconstructed to this degree of accuracy usime than one SNP. The two algorithms we present
in this chapter are based on information theoretic critdré reflect the accuracy of reconstructing based on all the
chosen SNPs (simultaneously). The first is a greedy sefeatgorithm to maximize the informativeness of SNPs
(measured by entropy as suggested by [21, 3]) which can benstwyield a 0.63 factor approximation algorithm.
The second is an MDL based criterion described previoudhjchivattempts to partition the set of SNPs into subsets
of highly correlated SNPs and then selecting represeet&NPs from each cluster.
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6 Information Theoretic Approaches

[21, 3] use Shannon Entropy to measure the amount of diyarké collection of SNPs. While a variety of techniques
have been proposed to select a set of SNPs with the most gnivefshow that a simple greedy algorithm leads to a
0.63 factor approximation algorithm for the following piein:

Problem 2. Given a collection o5 of n SNPs, find a subs#&t C S of sizek with the largest possible entropy.

This problem is NP-complete, but it can be shown that Aldgponitl returns a 0.63 approximation algorithm for
this problem. In fact it can also be shown that it is not pdssibr a polynomial time algorithm to have a better
approximation guarantee unless P=NP.

Ty «— ¢;
fori:=1...kdo
Pick s; so thatH (Ti_l U {si}) is maximized:;
T; —Ti—1 U {s:};
end
returnTy;
Algorithm 3: A greedy algorithm to pick a set of SNPs with the most entropy

A different approach has been advocated in [4]. They sugfestit is more important to pick a subset that
yields as much information about the remaining SNPs as Iplessivhile they present an approach based on pair-wise
predictability, Mutual Information generalizes this apach to allow the use of all the SNPs to predict the remaining
SNPs. The mutual information between two sEtsandT, of SNPs is given by

I(Tl;TQ) = H(Tl) +H(T2) —H(Tl UTQ)

This measures the reduction in entropy (or uncertaint¥) given information about the SNPs #h Haplotype blocks
are generally considered to be blocks which have low ditygrsnd are more or less (statistically) independent ofrothe
haplotype blocks. Therefore, partitioning the SNPs intdtiple blocks to minimize the mutual information across
the blocks can be considered to be a good approximation afitimal haplotype blocks. This is also directly related
to the Minimum Description Length (MDL) criterion for paitining. The entropy (S) measures the asymptotic
description length using a universal code, and so the MDiergoin for partitioning the set of SNE$into two parts

T, andT, = S\ Ty so thatH (T1) + H(T5) is minimized. In fact, this is equivalent to partitioningetBNPs into two
parts to minimize the mutual information between the twdspar

argmin I(T1; Ty) = arg min [H(Tl) + H(Ty) + H(Ty U TQ)}
S=T1UTs S=T1UTy

= arg min [H(Tl) + H(Ty) + H(S)}
S=T,UT,

— argmin [H(Tl) n H(TQ)}
S=T1UTs

This approach does not consider the distance between thg88ifions, just their statistical relationship. This may
be a better approach to constructing sets with high LD thasidering just locality because studies have shown that
there can be high LD even across large distances. It turnghatithere is an algorithm which when given a set of
SNPs, can find the optimal partition of SNPs to minimize th@ant of mutual information across the two parts (in
other words, it partitions the SNPs into parts which are aissically independent as possible). This algorithm can
be applied recursively in a simple dynamic programming ark to pick the optimal set of haplotype blocks. This
approach is closely related to the approaches of [37, 7chvtluster the SNPs on the basis of the similarities of the
pairwise LD measures, and then select one SNP per cluster.
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Figure 9: Leave-1-Out CV on the ACE Gene

7 Experimental Results

Figures 9, 10, and 11 compare various algorithms for recocting all the alleles from a small subset of alleles.
Besides the SNP selection algorithm presented in this ehape evaluate the Varimax, Greedy and Iterative Selection
algorithms of [28]. In [28], it is shown that these algorithisubstantially outperform other algorithms, and so these
three are used as the baseline. While the MDL clusteringiéfgo presented in this chapter can be used to select the
SNPs that are to be observed, different algorithms can lebtogeredict the remaining SNPs. We use two techniques
for reconstruction. The first is to predict an unknown SNPeblasn the known SNP from the same cluster as the
unknown SNP, and this is denoted as 'MDL’ in the figures. Thmad is to use all the observed SNPs (from all the
custers) to generate a classifier for each unknown SNPsisTtiéshoted 'IMDL' in the figures.

Figures 9, 10, and 11 compares the algorithms for recon&iruaccuracy on the ACE gene, the IBD gene and the
ABCB gene respectively.

8 Conclusions

In this chapter, we showed that several natural clusteniitgrion are either submodular, or reducible to submodular
criteria. As a result, we can use Queyranne’s algorithm tbtfie optimal 2-clustering with respect to these criterion.
For k-clustering ¢ > 2), we can use the Gomory-Hu tree produced by Queyranne’siigoto produce clusterings
guaranteed to be withi®(1 — 1/k) of the optimal. Because the MDL criterion is submodular, &e ase Queyranne’s
algorithm for MDL clustering. We applied MDL clustering te problem of determining an optimal set of haplotype
tagging SNPs, and this results in substantially bettedtetuan the algorithms currently used for this purpose.
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